Автор работы: Пользователь скрыл имя, 21 Марта 2013 в 10:23, дипломная работа
Целью научной работы является нахождение собственных частот крутильных колебаний вала с дисками и диагностирование по спектру частот моментов инерции масс дисков и жесткости участков вала на кручении. В соответствие с целью были поставлены и решены задачи: исследование задачи определения собственных частот крутильных колебаний вала с различным количеством дисков (с двумя, тремя, четырьмя, n- дисками) по известным моментам инерции масс дисков и жесткости участков вала на кручении; исследование задачи диагностирования моментов инерции масс дисков по собственным частотам колебаний вала; исследование задачи диагностирования жесткости участков вала на кручении по собственным частотам колебаний вала.
Введение 2
1 Определение собственных частот крутильных колебаний вала с дисками 8
1.1 Постановка прямой спектральной задачи Колебания вала с одним диском 8
1.2 Решение прямой задачи для вала с n-дисками 18
1.3 Колебания вала с тремя дисками 24
1.4 Колебания вала с четырьмя дисками 26
1.5 Применение метода решения прямой задачи, программная реализация решения 30
2 Диагностирование характеристик вала с дисками по спектру частот колебаний 33
2.1 Постановка обратной спектральной задач 33
2.2 Диагностирование коэффициентов жесткостей участков вала между дисками 33
2.3 Диагностирование моментов инерции масс дисков 37
2.4 Применение метода решения обратной задачи, программная реализация решения 39
Заключение 44
Список литературы 45
Пусть, например, известен момент инерции второго диска. Тогда, если рассмотреть снова две собственные частоты р1 и р2 колебаний вала, то уравнения (2.17) представляют собой систему алгебраических уравнений с двумя неизвестными I1, I3.
Подставляя выражение из второго уравнения системы (3.5) в первое уравнение, получим
Из последнего равенства выразим через :
Здесь .
Подставим теперь выражение (3.6) в первое уравнение системы (3.5). После преобразований имеем
где .
Решая уравнение (3.7) относительно неизвестной , получим квадратное уравнение
дискриминант которого имеет вид
Тогда
. (3.8)
Таким образом, моменты инерции масс двух дисков находятся однозначно по формулам (3.7) и (3.8). Подобные формулы можно получить для моментов инерции любых двух дисков при известном моменте инерции одного из трех дисков.
Аналогичная задача диагностирования решаема и для вала с четырьмя дисками, частотное уравнение которого получено нами в виде (2.20).
Вычисления, проведенные в пакете MAPLE, показывают, что из системы (3.4) можно однозначно определить коэффициенты жесткости двух любых участков вала между дисками при известном коэффициенте жесткости одного из трех участков. Причем все эти коэффициенты упругих закреплений определяются по двум собственным частотам крутильных колебаний вала.
Рассмотрим применение метода решения обратной задачи по определению характеристик вала с дисками на конкретных примерах.
Пример 4
Известны собственные частоты крутильных колебаний вала с тремя дисками: , . Момент инерции массы первого диска коэффициенты жесткости участков вала между дисками , .Найти моменты инерции масс второго и третьего дисков.
Решение.
Подставляя значения , в уравнение (2.20), получим систему двух уравнений с двумя неизвестными . Решение системы, найденное в пакете Maple, имеет вид: . Значения определены верно, так как по решению прямой задачи именно этим моментам инерции соответствуют данные значения собственных частот.
Пример 5
По двум собственным частотам , крутильных колебаний вала с тремя дисками и известным моментам инерции диагностировать коэффициенты жесткости участков вала на кручении.
Решение.
Уравнение (2.17) при заданных значениях , представляет собой следующую систему:
из которой получаем, что , . Эти же значения коэффициентов получаются при подстановке значений собственных частот в аналитические формулы (3.2) и (3.3). Коэффициенты продиагностированы верно, так как именно этим коэффициентам при решении прямой задачи соответствовали заданные значения собственных частот.
Пример 6
Рассматривается вал с четырьмя дисками, для которого известны , , . По частотам определить моменты инерции масс первых трех дисков.
Решение.
Подставляя значения в уравнение (2.20), получим систему трех уравнений с тремя неизвестными . Решение системы имеет вид .Значения определены верно, так как по решению прямой задачи именно этим моментам инерции соответствуют данные значения собственных частот.
Рассмотрим программные реализации решений обратных задач.
Решение примера 4
> restart;
> i1:=0.2;
> k1:=0.1;
> k2:=0.2;
> p:=.8480705122;
> p:=1.667566013;
> p:=-1.667566013;
> t1:=.5172825777-.7192235937e-
> t2:=7.732717430-.2780776408*(
> t3:=7.732717430-.2780776408*(
> solve({t1,t2,t3},{i2,i3});
Решение примера 5
> restart;
> i1:=0.2;
> i2:=0.3;
> i3:=0.1;
> p:=.8480705122;
> p:=1.667566013;
> t1:=p^4-(k1*(i1+i2)/(i1*i2)+
> t2:=p^4-(k1*(i1+i2)/(i1*i2)+
> solve({t1,t2},{k1,k2});
Решение примера 6
> restart;
> i4:=0.2;
> k1:=0.1;
> k2:=0.2;
> k3:=0.3;
> p:=1.581138830;
> p:=2.417091066;
> p:=-1.581138830;
> t1:=p^6-(k1*(i1+i2)/(i1*i2)+
> t2:=p^6-(k1*(i1+i2)/(i1*i2)+
> t3:=p^6-(k1*(i1+i2)/(i1*i2)+
> solve({t1,t2,t3},{i1,i2,i3});
В работе исследована и решена прямая задача определения собственных частот крутильных колебаний вала с дисками по известным моментам инерции масс дисков и коэффициентов жесткости участков вала на кручении. Решение сведено к системе n обыкновенных уравнений относительно неизвестных собственных частот крутильных колебаний вала. Из этой системы получены частотные уравнения для вала с двумя, тремя, четырьмя дисками. Сделаны соответствующие вычисления, составлена программа в математическом пакете Maple.
Впервые приведена постановка обратной спектральной задачи диагностирования характеристик вала с дисками по спектру частот его колебаний. Алгоритм диагностирования сводится к решению систем алгебраических уравнений. Рассмотрены диагностирования моментов инерции масс дисков по собственным частотам колебаний вала. Задача решена для вала с тремя, четырьмя дисками. Эти характеристики однозначно определяются для двух дисков вала с тремя дисками при известном моменте инерции массы третьего диска. Показано, что для вала с тремя дисками достаточно знание двух собственных частот колебаний вала. Причем, численные решения показывают возможность определения моментов инерции масс любых двух дисков (при известном моменте третьего диска), независимо от их взаимного расположения.
Аналогичная задача решена для вала с четырьмя дисками.
Диагностируются также коэффициенты жесткостей участков вала при кручении между дисками. Для вала с тремя дисками коэффициенты жесткостей восстанавливаются по двум собственным частотам. Для решения обратных задач составлены программы в математическом пакете Maple. Полученные результаты обратных задач подтверждают справедливость решений прямых задач.