Автор работы: Пользователь скрыл имя, 29 Мая 2013 в 16:41, курсовая работа
Цели моей работы следующие: во-первых, проследить историю развития данного метода, во-вторых, выявить характерные особенности его применения, и в-третьих, выделить основные этапы экономико-математического моделирования.
Введение.
Глава 1. Моделирование как метод научного познания.
Глава 2. История применения математического моделирования в экономике.
- История развития экономико-математического моделирования в США.
- История развития экономико-математического моделирования в СССР.
Глава 3. Особенности применения метода математического моделирования в экономике.
- Особенности экономических наблюдений и измерений.
- Случайность и неопределенность в экономическом развитии.
- Проверка адекватности моделей.
- Классификация экономико-математических моделей.
- Этапы экономико-математического моделирования.
Заключение.
Список литературы.
Методы экономических наблюдений и использования результатов этих наблюдений разрабатываются экономической статистикой. Поэтому стоит отметить только специфические проблемы экономических наблюдений, связанные с моделированием экономических процессов.
В экономике
многие процессы являются
Другая проблема порождается динамичностью экономических процессов, изменчивостью их параметров и структурных отношений. Вследствие этого экономические процессы приходится постоянно держать под наблюдением, необходимо иметь устойчивый поток новых данных. Поскольку наблюдения за экономическими процессами и обработка эмпирических данных обычно занимают довольно много времени, то при построении математических моделей экономики требуется корректировать исходную информацию с учетом ее запаздывания.
Познание количественных
отношений экономических
В
процессе моделирования возника
С точки зрения "интересов" моделирования экономики в настоящее время наиболее актуальными проблемами совершенствования экономических измерителей являются: оценка результатов интеллектуальной деятельности (особенно в сфере научно-технических разработок, индустрии информатики), построение обобщающих показателей социально-экономического развития, измерение эффектов обратных связей (влияние хозяйственных и социальных механизмов на эффективность производства).
Случайность и неопределенность
в экономическом развитии
Для методологии планирования экономики важное значение имеет понятие неопределенности экономического развития. В исследованиях по экономическому прогнозированию и планированию различают два типа неопределенности: "истинную", обусловленную свойствами экономических процессов, и "информационную", связанную с неполнотой и неточностью имеющейся информации об этих процессах. Истинную неопределенность нельзя смешивать с объективным существованием различных вариантов экономического развития и возможностью сознательного выбора среди них эффективных вариантов. Речь идет о принципиальной невозможности точного выбора единственного (оптимального) варианта.
В развитии экономики неопределенность вызывается двумя основными причинами. Во-первых, ход планируемых и управляемых процессов, а также внешние воздействия на эти процессы не могут быть точно предсказуемы из-за действия случайных факторов и ограниченности человеческого познания в каждый момент. Особенно характерно это для прогнозирования научно-технического прогресса, потребностей общества, экономического поведения.
Во-вторых, общегосударственное планирование и управление не только не всеобъемлющи, но и не всесильны, а наличие множества самостоятельных экономических субъектов с особыми интересами не позволяет точно предвидеть результаты их взаимодействий. Неполнота и неточность информации об объективных процессах и экономическом поведении усиливают истинную неопределенность.
На первых этапах исследований по моделированию экономики применялись в основном модели детерминистского типа. В этих моделях все параметры предполагаются точно известными. Однако детерминистские модели неправильно понимать в механическом духе и отождествлять их с моделями, которые лишены всех "степеней выбора" (возможностей выбора) и имеют единственное допустимое решение. Классическим представителем жестко детерминистских моделей является оптимизационная модель народного хозяйства, применяемая для определения наилучшего варианта экономического развития среди множества допустимых вариантов.
В результате накопления опыта использования жестко детерминистских моделей были созданы реальные возможности успешного применения более совершенной методологии моделирования экономических процессов, учитывающих стохастику и неопределенность. Здесь можно выделить два основных направления исследований. Во-первых, усовершенствуется методика использования моделей жестко детерминистского типа: проведение многовариантных расчетов и модельных экспериментов с вариацией конструкции модели и ее исходных данных; изучение устойчивости и надежности получаемых решений, выделение зоны неопределенности; включение в модель резервов, применение приемов, повышающих приспособляемость экономических решений к вероятным и непредвидимым ситуациям. Во-вторых, получают распространение модели, непосредственно отражающие стохастику и неопределенность экономических процессов и использующие соответствующий математический аппарат: теорию вероятностей и математическую статистику, теорию игр и статистических решений, теорию массового обслуживания, стохастическое программирование, теорию случайных процессов.
Проверка адекватности моделей
Сложность экономических процессов и явлений и другие отмеченные выше особенности экономических систем затрудняют не только построение математических моделей, но и проверку их адекватности, истинности получаемых результатов.
В естественных науках достаточным условием истинности результатов моделирования и любых других форм познания является совпадение результатов исследования с наблюдаемыми фактами. Категория "практика" совпадает здесь с категорией "действительность". В экономике и других общественных науках понимаемые таким образом принцип "практика - критерий истины" в большей степени применим к простым дескриптивным моделям, используемым для пассивного описания и объяснения действительности (анализа прошлого развития, краткосрочного прогнозирования неуправляемых экономических процессов и т.п.).
Однако главная задача экономической науки конструктивна: разработка научных методов планирования и управления экономикой. Поэтому распространенный тип математических моделей экономики - это модели управляемых и регулируемых экономических процессов, используемые для преобразования экономической действительности. Такие модели называются нормативными. Если ориентировать нормативные модели только на подтверждение действительности, то они не смогут служить инструментом решения качественно новых социально-экономических задач.
Специфика верификации нормативных моделей экономики состоит в том, что они, как правило, "конкурируют" с другими, уже нашедшими практическое применение методами планирования и управления. При этом далеко не всегда можно поставить чистый эксперимент по верификации модели, устранив влияние других управляющих воздействий на моделируемый объект.
Ситуация еще более усложняется, когда ставится вопрос о верификации моделей долгосрочного прогнозирования и планирования (как дескриптивных, так и нормативных). Ведь нельзя же 10-15 лет и более пассивно ожидать наступления событий, чтобы проверить правильность предпосылок модели.
Несмотря на отмеченные усложняющие обстоятельства, соответствие модели фактам и тенденциям реальной экономической жизни остается важнейшим критерием, определяющим направления совершенствования моделей. Всесторонний анализ выявляемых расхождений между действительностью и моделью, сопоставление результатов по модели с результатами, полученными иными методами, помогают выработать пути коррекции моделей.
Значительная роль в проверке моделей принадлежит логическому анализу, в том числе средствами самого математического моделирования. Такие формализованные приемы верификации моделей, как доказательство существования решения в модели, проверка истинности статистических гипотез о связях между параметрами и переменными модели, сопоставления размерности величин и т.д., позволяют сузить класс потенциально "правильных" моделей.
Внутренняя непротиворечивость предпосылок модели проверяется также путем сравнения друг с другом получаемых с ее помощью следствий, а также со следствиями "конкурирующих" моделей.
Оценивая современное состояние проблемы адекватности математических моделей экономике, следует признать, что создание конструктивной комплексной методики верификации моделей, учитывающей как объективные особенности моделируемых объектов, так и особенности их познания, по-прежнему является одной из наиболее актуальных задач экономико-математических исследований.
Классификация экономико-математических моделей
Математические модели экономических процессов и явлений более кратко можно назвать экономико-математическими моделями. Для классификации моделей используются разные основания.
По целевому назначению экономико-математические модели делятся на теоретико-аналитические, используемые в исследованиях общих свойств и закономерностей экономических процессов, и прикладные, применяемые в решении конкретных экономических задач (модели экономического анализа, прогнозирования, управления).
Экономико-математические
модели могут предназначаться
для исследования разных сторон
народного хозяйства (в частности, его
производственно-
Остановимся более подробно на характеристике таких классов экономико-математических моделей, с которыми связаны наибольшие особенности методологии и техники моделирования.
В соответствии с общей классификацией математических моделей они подразделяются на функциональные и структурные, а также включают промежуточные формы (структурно-функциональные). В исследованиях на народнохозяйственном уровне чаще применяются структурные модели, поскольку для планирования и управления большое значение имеют взаимосвязи подсистем. Типичными структурными моделями являются модели межотраслевых связей. Функциональные модели широко применяются в экономическом регулировании, когда на поведение объекта ("выход") воздействуют путем изменения "входа". Примером может служить модель поведения потребителей в условиях товарно-денежных отношений. Один и тот же объект может описываться одновременно и структурой, и функциональной моделью. Так, например, для планирования отдельной отраслевой системы используется структурная модель, а на народнохозяйственном уровне каждая отрасль может быть представлена функциональной моделью.
Выше уже показывались различия между моделями дескриптивными и нормативными. Дискриптивные модели отвечают на вопрос: как это происходит? или как это вероятнее всего может дальше развиваться?, т.е. они только объясняют наблюдаемые факты или дают вероятный прогноз. Нормативные модели отвечают на вопрос: как это должно быть?, т.е. предполагают целенаправленную деятельность. Типичным примером нормативных моделей являются модели оптимального планирования, формализующие тем или иным способом цели экономического развития, возможности и средства их достижения.
Применение дескриптивного подхода в моделировании экономики объясняется необходимостью эмпирического выявления различных зависимостей в экономике, установления статистических закономерностей экономического поведения социальных групп, изучения вероятных путей развития каких-либо процессов при не изменяющихся условиях или протекающих без внешних воздействий. Примерами дескриптивных моделей являются производственные функции и функции покупательского спроса, построенные на основе обработки статистических данных.
Является
ли экономико-математическая
Многие
экономико-математические
По
характеру отражения причинно-
Информация о работе Математическое моделирование в экономике