Автор работы: Пользователь скрыл имя, 11 Ноября 2013 в 17:39, лекция
Физиология растений зародилась в XVII—XVIII веках в классических трудах итальянского биолога и врача М. Мальпиги. В XIX веке в рамках физиологии растений обособляются её основные разделы: фотосинтез, дыхание, водный режим, минеральное питание, транспорт веществ, рост и развитие, движение, раздражимость, устойчивость растений, эволюционная физиология растений.В первой половине XX века главным направлением развития физиологии растений становится изучение биохимических механизмов дыхания и фотосинтеза. Во второй половине XX века намечается тенденция объединения в единое целое биохимии и молекулярной биологии, биофизики и биологического моделирования, цитологии, анатомии и генетики растений.
ЛЕКЦИЯ 1
Тема: Введение. Предмет, задачи и объекты физиологии растений. Основные структурные элементы растительной клетки: клеточная оболочка, цитоплазма, вакуоль, ядро, пластиды, митохондрии, рибосомы, эндоплазматическая сеть, микротрубочки. Водный обмен растений. Значение воды в жизнедеятельности растений. Осмотическое давление. Потенциал воды. Плазмолиз. Деплазмолиз.
Цель лекции: Ввести в курс о предмете, задачах и объектах физиологии растений. Ознакомить с основными структурными элементами растительной клетки. Дать знания о водном обмене растений и значении воды в жизнедеятельности растений.
Физиология растений является одной из фундаментальных дисциплин, необходимых для познания живой природы. Физиология растений – наука о
функциях растительного организма. Целью преподавания физиологии растений является освещение современного состояния знаний об общих закономерностях жизнедеятельности растений, выявление взаимосвязи основных биологических процессов между собой, а также зависимости этих процессов от условий внешней среды. Растение – это фототрофный организм, ведущий прикрепленный образ жизни.
Основные функции растительного организма:
1. энергетика (процессы фотосинтеза и дыхания)
2. водный режим и минеральное питание
3. мембранный и дальний транспорт веществ
4. процессы роста, развития и размножения
5. раздражимость и проведение сигналов в клетке и тканях
6. механизмы устойчивости и адаптации к неблагоприятным факторам
ФР изучает как минимум 4 типа превращений: превращение веществ, превращение формы, превращение энергии, превращение информации.
Обмен веществом, энергией и информацией составляет основу деятельности любой саморегулирующейся системы, в том числе и растения.
Этапы развития физиологии растений. Физиология растений зародилась в XVII—XVIII веках в классических трудах итальянского биолога и врача М. Мальпиги. В XIX веке в рамках физиологии растений обособляются её основные разделы: фотосинтез, дыхание, водный режим, минеральное питание, транспорт веществ, рост и развитие, движение, раздражимость, устойчивость растений, эволюционная физиология растений.В первой половине XX века главным направлением развития физиологии растений становится изучение биохимических механизмов дыхания и фотосинтеза. Во второй половине XX века намечается тенденция объединения в единое целое биохимии и молекулярной биологии, биофизики и биологического моделирования, цитологии, анатомии и генетики растений. Среди учёных возрастает интерес к исследованиям на субклеточном и молекулярном уровнях.
Высшие растения являются многоклеточными организмами, состоящими из миллионорв клеток, выполняющих специализированные функции. Специфические особенности растительной клетки: наличие системы пластид, крупной центральной вакуоли, прочной полисахаридной клеточной стенки. Раст. клетка содержит три относительно автономные, но тесно связанные между собой генетические системы – ядерную, митохондриальную и пластидную. Для растительных клеток характерен особый тип роста- рост растяжением. .
“300 лет назад жил в г. Дельфте, что в Голландии шлифовальщик стекол Антон Левенгук. Через свои стекла он рассматривал окружающий его мир. Взяв застоявшуюся воду из бочки, он увидел в ней движущиеся организмы. Левенгук очень удивился и назвал их ничтожнейшими зверушками. Позднее ученые дали им название простейшие. Заслуга Левенгука перед наукой велика: во-первых, он открыл не видимых невооружённым глазом животных. И, во-вторых, он сделал микроскоп орудием изучением природы”.
Основные структурные элементы растительной клетки. Дать определение: клеточная оболочка, цитоплазма, вакуоль, ядро, пластиды, митохондрии, рибосомы, эндоплазматическая сеть, микротрубочки. Основные функции структурных элементов растительных клеток. Пластиды — органоиды, присущие только растительным клеткам. Обычно это крупные тельца, хорошо видимые под световым микроскопом.Различают 3 типа пластид: бесцветные — лейкопласты, зеленые — хлоропласты, окрашенные в другие цвета — хромопласты. Пластиды каждого типа имеют свое строение и несут свои, им присущие функции. Хлоропласты — пластиды высших растений, в которых идет процесс фотосинтеза, т. е. использование энергии световых лучей для образования из неорганических веществ Митохондрии — мелкие тельца округлой или продолговатой формы, размером 0,5 — 1,5 мкм, т. е. величиной с бактерию. Митохондрии — это образования, построенные из липопротеиновых мембран, погруженных в основное вещество — матрикс. Оболочка митохондрии образована двумя мембранами, между которыми имеется промежуток.Внутренняя из мембран оболочки дает многочисленные впячивания внутрь, это кристы. Между ними находится матрикс. Эндоплазматический ретикулум — органоид цитоплазмы, в котором происходит синтез очень многих веществ. Различают агранулярный (гладкий) и гранулярный эндоплазматический ретикулум. На наружной поверхности каналов гранулярного ретикулума располагаются рибосомы. Агранулярный эндоплазматический ретикулум не несет рибосом. Аппарат (или комплексом) Гольджи или диктиосома - органелла состоящая из пачки плоских округлых цистерн, каждая из которых ограничена элементраной мембраной. Основная функция секреция веществ, синтезированных в клетке в наружную среду, либо во внутриклеточную вакуоль. Лизосомы — довольно мелкие (около 0,5 мкм в диаметре) округлые тельца. Содержимое лизосом — ферменты, переваривающие белки, углеводы, нуклеиновые кислоты и липиды. Вакуоль В типичной растительной клетке имеется крупная вакуоль, наполненная жидким содержимым. Часто вакуоль занимает почти весь объем клетки, так что цитоплазма составляет лишь тонкий слой, прилегающий к клеточной оболочке. У молодых клеток бывает несколько мелких вакуолей, которые по мере развития клетки разрастаются и сливаются в одну. Содержимое вакуоли — клеточный сок. Оболочка вакуоли – тонопласт. Клетки растений, в отличии от клеток животных, окружены плотной, механически прочной полисахаридной оболочкой называемой клеточной стенкой.
Водный обмен растений.
Вода является основной составной частью растительных организмов. Ее содержание составляет от 80 до 95 % от массы растущих тканей. Функции воды. Свободная вода легко передвигается, вступает в различные биохимические реакции, испаряется в процессе транспирации и замерзает при низких температурах. Под связанной подразумевают содержащуюся в гетерогенных системах воду, которая не является растворителем и имеет ограниченную подвижность.
Осмосом называют процесс диффузии воды в раствор, отделенный полунепроницаемой мембраной, которая пропускает молекулы растворителя, но не растворенных веществ. Когда вода диффундирует в раствор, отделенный от неё полупроницаенмой мембраной возникает давление, называемое осмотическим.
Когда растение испытывает недостаток влаги водный потенциал клеточной стенки ниже, чем внутри клетки. Плазмолиз – это потеря тургора клетками в гипертонической среде. Различают колпачковый плазмолиз, который вызывается одновалентными ионами, и вогнутый, или судорожный, - многовалентными ионами. Деплазмолиз – процесс исчезновения плазмолиза и возвращение клетки в состояние тургора. Деплазмолиз наблюдается при всасывании воды плпзмолизированной клеткой.Движение воды из почвы по растению обусловливается тремя силами: корневым давлением, сосущей силой листьев и силой сцепления частиц воды.
Транспирация происходит и летом, и зимой; опадение листьев осенью — это приспособительная особенность растений для уменьшения транспирации, так как зимой подача воды корнями из замерзшей почвы сильно затруднена. Ветер усиливает транспирацию. Различают устьичную и кутикулярную транспирацию. Первая раз в 20 интенсивнее, чем вторая. Количество воды, необходимое растению для создания 1 г сухого вещества, называется транспирационным коэффициентом. Другой единицей сравнения растений в этом отношении будет продуктивность транспирации — количество граммов сухого вещества, образующегося при испарении 1 л (1000 г) воды. Чаще всего она равна 3—5 г.
Относительная транспирация — отношение воды, испаряемой листом, к воде, испаряемой со свободной водной поверхности той же площади за один и тот же промежуток времени.
Вопросы для самоконтроля.
10. Регуляция водообмена и продуктивность растений.
ЛЕКЦИЯ 2
Общее уравнение фотосинтеза 6CO2 + 6H2O = C6H12O6 + 6O2
У наземных растений специальным органом фотосинтетической деятельности служит лист, где локализованы специализированные структуры клетки - хлоропласты, содержащие пигменты и другие компоненты, необходимые для процессов поглощения и преобразования энергии света в химический потенциал. Объяснить строение листа Строение листа. Основным органом фотосинтеза у высших растений является лист. Особенности строения этого органа позволяют осуществлять процесс поглощения солнечной энергии, преобразовывать ее в энергию органических соединений и обеспечивать автотрофный тип питания, который характерен для растительного организма. В зависимости от способа фиксации углекислого газа существуют определенные различия в структурной организации листовой пластинки. Большинство культурных растений средних широт имеют анатомическое строение, позволяющее осуществлять фиксацию углекислого газа за счет химических реакций цикла Кальвина (С3-путь).
Строения листа у растений, имеющих С3-путь фиксации углекислого газа
Эпидермис состоит из живых клеток различной формы, не способных к ассимиляции углекислого газа, защищает лист от неблагоприятных факторов внешней среды, регулирует поток квантов света. Мезофилл листа состоит из клеток двух типов, которые образуют столбчатую (полисадную) и губчатую паренхиму.
Функции тканей листа в процессе фотосинтеза
Н2О + СО2 --> Н2СО3
Н2СО3 --> Н+ + НСО3- ;
ион НСО3- является резервом углекислого газа и обеспечивает его приток в клетки мезофилла листа.
Для ряда растений, осуществляющих процесс фиксации углекислого газа путем Хэтча-Слэка (С4-путь), характерно особое анатомическое строение листа.
У С4-растений проводящие пучки окружены двойным слоем клеток – ײкранц-анатомияײ (от немецкого - корона, венец). Первый слой - клетки обкладки сосудистого пучка содержат крупные (часто без гран) хлоропласты. В хлоропластах функционируют ферменты цикла Кальвина-Бенсона, этот слой обеспечивает накопление крахмала.
Второй слой - клетки мезофилла листа, содержат хлоропласты обычного вида. Этот вид хлоропластов активно осуществляет процесс световой фазы фотосинтеза и фиксацию углекислого газа с помощью ФЕП-карбоксилазы, создает высокое соотношение СО2/О2.
Основными ф/с элементами клеток растений являются хлоропласты. Хлоропласты имеют наиболее высокую степень организации внутренних мембранных структур по сравнению с другими органоидами клетки