Автор работы: Пользователь скрыл имя, 10 Января 2014 в 17:22, шпаргалка
Работа содержит ответы на вопросы для экзамена (зачета) по "Физиологии растений"
Первый этап, то есть гликолиз, одинаков при брожении и дыхании. Поворотным моментом является образование пировиноградной кислоты. Впервые Л. Пастер показал, что в присутствии кислорода брожение у дрожжей заменяется дыханием. Дело в том, что для брожения необходим НАДН, который в аэробных условиях окисляется. Это явление характерно и для высших растений и получило название эффекта Пастера.
Гликолиз — процесс анаэробного распада глюкозы, идущий с освобождением энергии, конечным продуктом которого является пировиноградная кислота. Реакции гликолиза протекают в растворимой части цитоплазмы (цитозоле) и в хлоропластах.
С.П. Костычев выдвинул положение о генетической связи процессов брожения и дыхания. При этом он опирался на следующие факты:
1. У высших растений
был найден весь набор
2. При временном попадании
в условия анаэробиоза высшие
растения определенное время
существуют за счет энергии,
выделяющейся в процессе
3. При добавлении к
клеткам факультативных
40. Регуляция
дыхания: разнообразие путей
В присутствии кислорода
пировиноградная кислота
41. Пути окисления
дыхательного субстрата:
Окисление дыхательных субстратов в ходе дыхания осуществляется с участием ферментов. Они называются оксиредуктазами, так как окисление одного вещества (донора электронов и протонов) сопряжено с восстановлением другого вещества (акцептора).
Гликолитический
путь - этот путь дыхательного обмена состоит
из двух фаз: анаэробной (гликолиз) и аэробной
(цикл Кребса). Реакции гликолиза идут
в цитозоле и в хлоропластах. В результате
гликолиза из одной молекулы глюкозы образуется
2 молекулы пировиноградной кислоты и
4 молекулы АТФ. Поскольку макроэргическая
связь формируется прямо на окисляемом
субстрате, такой процесс образования
АТФ получил название субстратного фосфорилирования.
Две молекулы АТФ покрывают расход на
первоначальное активирование субстрата
за счет фосфорилирования. Следовательно,
накапливаются 2 молекулы АТФ. Кроме того,
в ходе гликолиза восстанавливаются 2
молекулы НАД до НАДН, окисление которых
в электронтранспортной цепи митохондрий
приводит к синтезу 6 молекул АТФ. Итого
образуются 8 молекул АТФ. Образовавшиеся
2 молекулы пировиноградной кислоты вступают
в аэробную фазу дыхания. Цикл ди- и трикарбоновых
кислот (цикл Кребса) - аэробная фаза
дыхания локализована в митохондриях.
Пировиноградная кислота окисляется до
воды и углекислого газа в дыхательном
цикле, получившем название цикла ди- и
трикарбоновых кислот или цикла Кребса
в честь английского биохимика Г. Кребса,
описавшего этот путь. В этом цикле окисляется
не сама пировиноградная кислота, а ее
производное – ацетилкоэнзим А. Он образуется
в результате окислительного декарбоксилирования
пировиноградной кислоты. Процесс этот
состоит из ряда реакций и катализируется
сложной мультиферментной системой, состоящей
из трех ферментов и пяти коферментов,
и названной пируваткарбоксилазой. При
окислении одной молекулы пировиноградной
кислоты образуется 3 молекулы НАДН, 1 молекула
НАДФН и 1 молекула ФАДН2, при окислении
которых в дыхательной электронтранспортной
цепи синтезируется 14 молекул АТФ. Кроме
того, 1 молекула АТФ образуется в результате
субстратного фосфорилирования. Глиоксилатный
цикл - является модификацией цикла
Кребса и локализован не в митохондриях,
а в глиоксисомах. В этих органеллах образуется
изолимонная кислота, как и в цикле Кребса.
Затем она под действием изоцитратлиазы
распадается на глиоксиловую и янтарную
кислоты. Глиоксиловая кислота реагирует
со второй молекулой ацетилкоэнзима А
с образованием яблочной кислоты, которая
затем окисляется до щавелевоуксусной
кислоты. Янтарная кислота выходит из
глиоксисомы и превращается в щавелевоуксусную
кислоту. В ходе глиоксилатного цикла
утилизируются две молекулы ацетилкоэнзима
А, образовавшегося при распаде запасных
жиров, и образуется одна молекула НАДН. Апотомический
путь катаболизма гексоз (пентозофосфатный
путь окисления глюкозы, гексозомонофосфатный
цикл, пентозный шунт) происходит в цитоплазме
и при отсутствии света в хлоропластах.
Глюкоза фосфорилируется при участии
гексокиназы до глюкозо-6-фосфата. Он окисляется
глюкозо-6-
42. Гетеротрофность растений: растения-сапрофиты, паразиты, насекомоядные; трофика незеленых органов растений.
Автотрофные организмы самостоятельно синтезируют органическое вещество из неорганического, гетеротрофные – питаются готовым органическим веществом. Среди растений имеются гетеротрофы – паразиты и насекомоядные растения. Сапрофиты - гетеротрофные организмы, которые непосредственно от других организмов не зависят, но нуждаются в готовых органических соединениях. Сапрофиты используют продукты жизнедеятельности других организмов или разлагающиеся растительные и животные ткани. Паразиты – это растения, которые либо полностью (заразиха) либо в значительной мере (повилика) потеряли способность к фотосинтезу. Семена заразихи прорастают под влиянием корневых выделений растения-хозяина. Проростки заразихи растут по направлению к корню растения-хозяина и верхушка зародышевого корня заразихи внедряется в него, преобразуясь в гаусторию (присоску) и выделяя ферменты, растворяющие клеточные стенки. Заразиха получает от растения-хозяина все необходимые вещества. Повилика – вьющееся растение, у которого корневой конец засыхает, а стебель обвивается вокруг стебля растения-хозяина и присасывается к нему с помощью гаусторий в форме дисков, прилегающих к коре растения. Группа клеток из центральной части диска, прорастая, достигает проводящей системы хозяина, откуда повилика получает воду и питательные вещества. Сейчас известно более 400 видов покрытосеменных растений, которые ловят мелких насекомых и используют их как дополнительный источник питания. Большинство из них растут на бедных азотом болотистых почвах. По способу ловли добычи растения делят на две группы. При пассивном способе ловли насекомые прилипают к листьям, железки которых выделяют липкую смесь, или попадают в ловушки в виде кувшинов или урн, окрашенных в яркие цвета и выделяющих сладкий ароматный секрет. При активном захвате происходит приклеивание насекомого липкой слизью и обволакивание его листом или волосками, а также насекомые втягиваются с водой в ловчие пузырьки, благодаря поддерживаемому в них вакууму. Попавшее насекомое переваривается под действием секрета железок, содержащего кислоты, протеазы, фосфатазы, РНКазы, липазы. Всасывание продуктов пищеварения осуществляется теми же железками, соединенными с проводящей системой растения.
В зрелых зерновках злаков зародыш непосредственно не контактирует с тканями эндосперма, содержащими запасные питательные вещества. Для переваривания и поглощения запасных веществ служит видоизмененная семядоля – щиток. В эпителиальных клетках щитка действует протонная помпа, выделяющая в эндосперм протоны. Также из щитка в эндосперм транспортируются органические кислоты и кислые гидролазы: амилаза, протеаза, глюканаза и другие. На третьи сутки прорастания семян начинает функционировать слой живых клеток в эндосперме – периферический алейроновый слой. Эти клетки также выделяют в эндосперм органические кислоты и кислые гидролазы. В результате запасные вещества эндосперма растворяются и всасываются щитком, а затем попадают в проводящие пучки.
43. Гипотеза
эндосимбиотического происхожде
В результате изучения последовательности оснований в митохондриальной ДНК были получены весьма убедительные доводы в пользу того, что прежде митохондрии были аэробными бактериями (прокариотами), родственными риккетсиям, поселившимися некогда в предковой эукариотической клетке и «научившимися» жить в ней в качестве симбионтов. Теперь митохондрии имеются почти во всех эукариотических клетках, размножаться вне клетки они уже не способны. Существуют свидетельства того, что первоначально эндосимбиотические предки митохондрий не могли ни импортировать белки, ни экспортировать АТФ. Вероятно, первоначально они получали от клетки-хозяина пируват, а выгода для хозяина состояла в обезвреживании аэробными симбионтами токсичного для нуклеоцитоплазмы кислорода. Подобно митохондриям, пластиды также имеют свои собственные прокариотические ДНК и рибосомы. По-видимому, хлоропласты произошли от фотосинтезирующих бактерий, поселившихся в свое время в гетеротрофных клетках протистов, превратив их в автотрофные водоросли. Доказательства: Митохондрии и пластиды:
*имеют две полностью замкнутые мембраны. При этом внешняя сходна с мембранами вакуолей, внутренняя — бактерий.
*размножаются бинарным делением (причем делятся иногда независимо от деления клетки), никогда не синтезируются de novo.
*генетический материал — кольцевая ДНК, не связанная с гистонами (По доле ГЦ ДНК митохондрий и пластид ближе к ДНК бактерий, чем к ядерной ДНК эукариот)
*имеют свой аппарат синтеза белка — рибосомы и др.
*рибосомы прокариотического типа — c константой седиментации 70S. По строению 16s рРНК близки к бактериальной.
*некоторые белки этих органелл похожи по своей первичной структуре на аналогичные белки бактерий и не похожи на соответствующие белки цитоплазмы.
Проблемы:
*ДНК митохондрий и пластид, в отличие от ДНК большинства прокариот, содержат интроны.
*В собственной ДНК митохондрий и хлоропластов закодирована только часть их белков, а остальные закодированы в ДНК ядра клетки. В ходе эволюции происходило «перетекание» части генетического материала из генома митохондрий и хлоропластов в ядерный геном. Этим объясняется тот факт, что ни хлоропласты, ни митохондрии не могут более существовать (размножаться) независимо.
*не решён вопрос о происхождении ядерно-цитоплазматического компонента (ЯЦК), захватившего протомитохондрии. Ни бактерии, ни археи не способны к фагоцитозу, питаясь исключительно осмотрофно. Молекулярно-биологические и биохимические исследования указывают на химерную архейно-бактериальную сущность ЯЦК. Как произошло слияние организмов из двух доменов, также не ясно.
44. Отток ассимилятов по ситовидным трубкам. Модель Мюнха и другие гипотезы.
Ассимиляты из клеток листьев поступают во флоэму, состоящую из нескольких типов клеток. В ситовидных трубках флоэмы плазмалемма окружает протопласт, содержащий небольшое число митохондрий и пластид, а также агранулярный эндоплазматический ретикулум. Тонопласт разрушен. Зрелая ситовидная трубка лишена ядра. Поперечные клеточные стенки – ситовидные пластинки – имеют перфорации, выстланные плазмалеммой и заполненные полисахаридом каллозой и фибриллами актиноподобного Ф-белка, которые ориентированы продольно. Ситовидные трубки связаны с клетками-спутниками плазмодесмами. Клетки-спутники (сопровождающие клетки) – это небольшие вытянутые вдоль ситовидных клеток паренхимные клетки с крупными ядрами, цитоплазмой, с большим количеством рибосом, других органелл и, особенно, митохондрий. Число плазмодесм в этих клетках в 3-10 раз больше, чем в стенках соседних мезофильных клеток. В клеточных стенках клеток-спутников много инвагинаций, выстланных плазмалеммой, что значительно увеличивает ее поверхность. Самые мелкие проводящие пучки включают один-два ксилемных сосуда и одну ситовидную трубку с сопровождающей клеткой. У многих С4-растений проводящие элементы листа окружены плотно сомкнутыми клетками обкладки, отделяющими пучки от мезофилла и от межклетников. Проводящая система листа представлена проводящими пучками, которые объединены в жилки разных размеров. Жилки расположены по листу так, чтобы обеспечить равномерный сбор ассимилятов по всей площади листа. Транспорт ассимилятов в листе строго ориентирован: ассимиляты передвигаются из каждой микрозоны клеток мезофилла радиусом 70-130 мкм в сторону ближайшего к ней малого пучка и далее по клеткам флоэмы в более крупную жилку. Основной транспортной формой ассимилятов у большинства растений является сахароза (до 85 % от общего сухого вещества). Активность инвертазы – фермента, расщепляющего сахарозу на глюкозу и фруктозу – в проводящих тканях очень низка. Также транспортируются олигосахара, азотистые вещества, органические кислоты, витамины, гормоны. Неорганические соли составляют 1-3 % от общего количества веществ сока, особенно много ионов калия. В клетках мезофилла осмотическое давление ниже, чем в тонких проводящих пучках. По мере продвижения от тонких пучков к средней жилке содержание сахаров возрастает. Поэтому загрузка проводящей системы ассимилятами идет против градиента концентрации с затратой энергии. Источником АТФ служат клетки-спутники. В плазмалемме клеток-спутников функционирует протонная помпа, выводящая наружу протоны. Она активируется ауксином и блокируется абсцизовой кислотой. Закисление апопласта в результате работы этой помпы способствует отдаче ионов калия и сахарозы клетками листа и поступлению их в клетки флоэмных окончаний. Трансмембранный перенос протонов происходит по концентрационному градиенту, а сахарозы – против градиента с помощью белков-переносчиков. Поступившие в клетки протоны вновь выкачиваются протонной помпой, работа которой сопряжена с поглощением ионов калия. Сахароза и ионы калия по плазмодесмам переносятся в полости ситовидных трубок. В 1926 г. Э. Мюнх предложил гипотезу тока ассимилятов по ситовидным элементам флоэмы под давлением. Согласно этой гипотезе между фотосинтезирующими клетками листа, где накапливается сахароза, и тканями, использующими ассимиляты, создается осмотический градиент и возникает ток жидкости во флоэме от донора к акцептору. Предполагается также, что движущей силой перемещения жидкости из одной ситовидной трубки в другую через поры в ситовидной пластинке может быть транспорт ионов калия. Ионы калия активно входят в ситовидную трубку выше ситовидной пластинки, проникают через нее в нижележащую ситовидную трубку и пассивно выходят из нее в апопласт. В результате на ситовидных пластинках возникает электрический потенциал, способствующий транспорту веществ. Кроме того, фибриллы актиноподобного Ф-белка в порах ситовидных пластинок обладают сократительными свойствами и периодическими сокращениями способствуют передвижению жидкости по флоэме. Разгрузка флоэмы происходит из-за высокого гидростатического давления в ситовидных трубках и аттрагирующей (притягивающей) способности органа-акцептора. Его аттрагирующая способность зависит от интенсивности роста органа, в ходе которого используются транспортируемые ассимиляты и тем самым снижается их концентрация в клетке. Следовательно, возникает градиент концентрации между элементом проводящей системы и клеткой акцептора. Интенсивность роста контролируется балансом регуляторов роста. В плазмалемме клеток акцептора функционирует протонная помпа, которая воздействует на ситовидные трубки и клетки-спутники, закисляя апопласт и тем самым способствует отдаче ими ионов калия и сахарозы в клеточные стенки. Затем сахароза поглощается клетками акцептора с участием мембранных переносчиков в симпорте с протонами, а ионы калия – по электрическому градиенту.