Автор работы: Пользователь скрыл имя, 11 Марта 2014 в 22:32, шпаргалка
Работа содержит ответы на вопросы для экзамена по "Биохимии".
Комплекс F0 состоит из нескольких субъединиц, образующих канал, по которому протоны переносятся в матрикс.
Комплекс F1 выступает в матрикс. Он состоит из 9 субъединиц. Между α- и β- субъединицами располагаются три активных центра, в которых происходит синтез АТФ.
Повышение концентрации протонов в межмембранном пространстве активирует АТФ-синтазу. Электрохимический потенциал ΔμН+ заставляет протоны двигаться по каналу АТФ-синтазы в матрикс. Параллельно под действием ΔμН+ происходят конформационные изменения в парах α- и β- субъединиц белка F1 , в результате чего из АДФ и Н3РО4 образуется АТФ. Электрохимический потенциал, генерируемый в 3 пунктах сопряжения в ЦПЭ, используется для синтеза одной молекулы в каждом пункте.
Отношение количества Н3РО4, использованной на фосфорилирование АДФ, к атому поглощенного кислорода, называют коэффициентом окислительного фосфорилирования и обозначают Р/О.
Для субстратов, которые отдают протоны и электроны на НАД-зависимые дегидрогеназы, коэффициент фосфорилирования равен 3/1=3АТФ, так как протоны и электроны транспортируются через 3 пункта сопряжения (I, III, IV комплексы).
Например, изоцитрат, малат, ПВК и др.
Для субстратов, которые отдают протоны и электроны на ФАД-зависимые дегидрогеназы и сукцинат-фумарат-дегидрогеназу (II комплекс), коэффициент фосфорилирования равен 2/1=2АТФ, так как электроны поступают на III комплекс, минуя первый пункт сопряжения (I комплекс). Например, сукцинат, глицерол-3-фосфат и др.
Зависимость интенсивности дыхания митохондрий от концентрации АДФ называют дыхательным контролем.
6.6.Разобщение окисления и фосфорилирования, разобщающие факторы. Биологическая роль термогенина бурой жировой ткани в детском организме. Гипоэнергетические состояния как результат гипоксии, голодания, авитаминозов и других. причин. Микросомальное окисление. Биологическая роль.
На синтез молекулы АТФ расходуется примерно 40-45% всей энергии электронов, переносимых по ЦПЭ, 25% тратится на работу по переносу веществ через мембрану. Остальная часть энергии рассеивается в виде теплоты и используется на поддержание температуры тела. Дополнительное образование теплоты происходит при разобщении дыхания и фосфорилирования, которое может быть биологически полезным. Оно позволяет генерировать тепло для поддержания температуры у новорожденных, у зимнеспящих животных и у всех млекопитающих в процессе адаптации к холоду. У них существует бурый жир – особая ткань, специализирующаяся на теплопродукции посредством разобщения дыхания и фосфорилирования. Бурый жир содержит много митохондрий. Около 10% всех белков приходится на так называемый разобщающий белок (РБ-1) – термогенин.
Окисление субстратов и фосфорилирование АДФ в митохондриях прочно сопряжены. Скорость использования АТФ регулирует скорость потока электронов в ЦПЭ. Если АТФ не используется и его концентрация в клетках возрастает, то прекращается и поток электронов к кислороду. С другой стороны, расход АТФ и превращение его в АДФ увеличивает окисление субстратов и поглощение кислорода.
Зависимость интенсивности дыхания митохондрий от концентрации АДФ называют дыхательным контролем.
Некоторые химические вещества (протонофоры) могут переносить протоны и другие ионы (ионофоры) из мембранного пространста через мембрану в матрикс, минуя протонные каналы АТФ-синтазы. В результате этого исчезает электрохимический потенциал и прекращается синтез АТФ. Это называют разобщением дыхания и фосфорилирования. В результате разобщения количество АТФ снижается, а АДФ увеличивается, что приводит к возрастанию скорости окисления НАДН и ФАДН2, возрастает и количество поглощенного кислорода, но энергия выделяется в виде тепла, и коэффициент Р/О резко снижается (свободное окисление).
Разобщители – липофильные вещества, легко проходящие через липидный слой мембраны:
- 2,4-динитрофенол,
- дикумарол (антивитамин вит. К);
- билирубин (продукт распада гема);
- тироксин (гормон щитовидной железы).
Все эти вещества проявляют разобщающее действие только при их высокой концентрации.
Для постоянного синтеза АТФ клетками необходим приток метаболитов как субстратов дыхания и кислорода как конечного акцептора электронов в реакциях окисления, сопряженных с синтезом АТФ.
Нарушения какого-либо этапа метаболизма, приводящие к прекращению синтеза АТФ, гибельны для клетки.
Состояния, при которых синтез АТФ снижен, объединяют термином «гипоэнергетические».
Причины «гипоэнергетических состояний»:
Функции.
- из холестерина образуются желчные кислоты, стероидные гормоны (гормоны коры надпочечников, половые гормоны);
- из пролина оксипролин;
- из лизина оксилизин;
- из фенилаланина тирозин и др.
В реакциях микросомального окисления участвуют ферменты- гидроксилазы (оксигеназы), которые делятся на монооксигеназы, катализирующие включение одного атома кислорода в молекулу субстрата и диоксигеназы- включение двух атомов кислорода в молекулу субстрата.
7.6.Образование токсических форм кислорода ( супероксиданион, гидроксилрадикал, пероксид водорода), их повреждающее действие. Антиоксиданты (витамины Е,А,С, убихинон и др.) и антиоксидантные ферменты (супероксиддисмутаза, каталаза, пероксидаза).
В большинстве реакций с участием молекулярного кислорода его восстановление происходит поэтапно с переносом одного электрона на каждом этапе. При одноэлектронном переносе происходит образование промежуточных высокореактивных форм кислорода.
В невозбужденном состоянии кислород нетоксичен. Образование токсических форм кислорода связано с особенностями его молекулярной структуры. О2 содержит 2 неспаренных электрона с параллельными спинами, которые не могут образовывать термодинамическую стабильную пару и располагаются на разных орбиталях. Каждая из этих орбиталей может принять ещё один электрон.
Полное восстановление О2 происходит в результате 4 одноэлектронных переходов:
ē
О2 О2ˉ - супероксид
+ē , Н+
О2- Н2О2 - пероксид
+ē , Н+
Н2О2 Н2О + ОН- 2Н2О
Супероксид, пероксид и гидроксильный радикал- активные окислители, представляют серьезную опасность для многих структурных компонентов клетки.
Активные формы кислорода могут отщеплять электроны от многих соединений, превращая их в новые свободные радикалы, инициируя цепные окислительные реакции. Активные формы О2 вызывают окисление липидов, белков мембраны клеток, ДНК, РНК. Все это приводит к разрушению клеток.
Большая часть активных форм О2 образуется при переносе электронов в ЦПЭ, прежде всего, при функционировании QН2– дегидрогеназного комплекса. Это происходит в результате неферментативного переноса («утечки») электронов с QН2 на кислород.
Супероксид может образовываться:
В организме существуют защитные механизмы:
- гемсодержащие ферменты: пероксидаза, которая расщепляет Н2О2:
пероксидаза
Н2О2 Н2О+О
В организме существуют защитные механизмы:
- гемсодержащие ферменты: каталаза, которая расщепляет Н2О2:
каталаза
2Н2О2 2Н2О + 2О2
- супероксиддисмутаза (СД), глутатионпероксидаза, обезвреживающие О2ˉ:
СД
2О2- + 2Н+ 2Н2О2 + О2
каталаза
2Н2О2 2Н2О + 2О2
- антиоксиданты, обезвреживающие свободные радикалы – витамины Е, А, С; глутатион, цистеин, биофлавоноиды, Q10 , мочевая кислота, янтарная кислота, селенит натрия и др.
1.7.Углеводы, классификация: моносахариды (глюкоза, фруктоза, галактоза, рибоза, и их производные (аминосахара, уроновые кислоты, фосфорные эфиры);дисахариды (сахароза, лактоза, мальтоза); гомополисахариды, гетерополисахариды. Химическое строение, биологическая роль.
Углеводы вместе с белками, липидами и нуклеиновыми кислотами входят в состав живых организмов и определяют специфичность их строения и функционирования. На долю углеводов приходится около 75% массы пищевого рациона и более 50% от суточного количества необходимых калорий. Углеводы являются поставщиками энергии и выполняют структурную роль. Из углеводов в процессе метаболизма образуются вещества, которые служат исходными субстратами для синтеза липидов, аминокислот, нуклеотидов.
Углеводы – это альдегидо- или кетоноспирты.
Функции углеводов:
Суточная потребность – 500 грамм.
Классификация:
зависимости от количества углеродных атомов моносахариды делятся на:
Истинные:
- триозы
- тетрозы
- пентозы (рибоза, дезоксирибоза)
- гексозы (глюкоза, галактоза, фруктоза) и др.
Производные моносахаридов:
- уроновые кислоты – если вместо СН2ОН группы в 6 положении – СООН группа (у глюкозы – глюкуроновая
кислота; у галактозы – галактоуроновая кислота). Они входят в состав гликозаминогликанов;
- аровые кислоты – если в 6 и 1 положениях – СООН группы (у глюкозы – глюкаровая, у галактозы –
галактаровая);
- аминосахара – если во 2 положении – NН2группа (у глюкозы – глюкозамин, у галактозы – галактозамин). Они
входят в состав гликозамингликанов;
- N-гликозиды (рибоза, дезоксирибоза,
соединенные с азотистым
связью). Входят в состав РНК, ДНК, АТФ, НАД, ФАД и др.;
- фосфорные эфиры моносахаридов – замещение атомов Н на остатки фосфорной кислоты: глюкозо-6-фосфат;
фруктозо-1,6-дифосфат; рибозо-5-фосфат и др.
2. Олигосахариды (в их состав входят от 2 до 10 остатков моносахаридов)
Дисахариды:
- мальтоза состоит из 2 молекул α-Dглюкозы, соединенных α-1,4-гликозидной связью. Она имеет свободный
полуацетальный гидроксил, обладает восстанавливающими свойствами;
- лактоза (молочный сахар) состоит из β-Dгалактозы и α-Dглюкозы соединенные β-1,4-гликозидной связью.
Имеет свободный