Автор работы: Пользователь скрыл имя, 11 Марта 2014 в 22:32, шпаргалка
Работа содержит ответы на вопросы для экзамена по "Биохимии".
Анаболизм – синтез сложных веществ из простых. В анаболических процессах используется энергия, освобождающаяся при катаболизме (эндергонические реакции).
Источниками энергии для организма являются белки, жиры и углеводы. Энергия, заключенная в химических связях этих соединений, в процессе фотосинтеза трансформировалась из солнечной энергии. Обмен веществ состоит из 4 этапов.
I этап – расщепление в желудочно-кишечном тракте белков, жиров и углеводов до мономеров (аминокислот, высших жирных кислот и глицерина, моносахаридов). В процессе пищеварения теряется видовая специфичность питательных веществ.
II этап – внутриклеточный катаболизм- глюкоза, высшие жирные кислоты, аминокислоты подвергаются специфическим превращениям до образования ацетил-КоА (гликолиз, β-окисление высших жирных кислот, трансаминирование аминокислот и др.)- процессы протекают в цитоплазме.
III этап – общий путь катаболизма – цикл трикарбоновых кислот (цикл Кребса).
IV этап – терминальная фаза окисления- тканевое дыхание, ЦПЭ- цепь переноса электронов (дыхательная цепь).
Окисление органических веществ в клетках, сопровождающееся потреблением кислорода и синтезом воды, называют тканевым дыханием, а цепь переноса электронов (ЦПЭ) – дыхательной цепью.
Особенности биологического окисления:
Электроны, поступающие в ЦПЭ, по мере их продвижения от одного переносчика к другому теряют свободную энергию. Значительная часть этой энергии запасается в АТФ, а часть рассеивается в виде тепла.
Перенос электронов от окисляемых субстратов к кислороду происходит в несколько этапов. В нем участвует большое количество промежуточных переносчиков, каждый из которых способен присоединять электроны от предыдущего переносчика и передавать следующему. Так возникает цепь окислительно-восстановительных реакций, в результате чего происходят восстановление О2 и синтез Н2О.
2.6. Анаболизм. Катаболизм. Макроэргические соединения (АТФ,УТФ,ЦТФ, креатин-фосфат), химическое строение, биологическая роль.
АТФ – является макроэргическим соединением, содержащим макроэргические связи; при гидролизе концевой фосфатной связи выделяется около 20 кдж/моль энергии.
К макроэргическим соединениям относятся ГТФ, ЦТФ, УТФ, креатинфосфат, карбамоилфосфат и др. Они используются в организме для синтеза АТФ. Например, ГТФ + АДФ à ГДФ + АТФ
Этот процесс называется субстратное фосфорилирование – экзоргонические реакции. В свою очередь все эти макроэргические соединения образуются при использовании свободной энергии концевой фосфатной группы АТФ. Наконец, энергия АТФ используется для совершения различных видов работ в организме:
- механической (мышечное сокращение);
- электрической (проведение нервного импульса);
- химической (синтез веществ);
-осмотической (активный
транспорт веществ через
Таким образом, АТФ- главный, непосредственно используемый донор энергии в организме. АТФ занимает центральное место между эндергоническими и экзергоническими реакциями.
В организме человека образуется количество АТФ, равное массе тела и за каждые 24 часа вся эта энергия разрушается. 1 молекула АТФ «живет» в клетке около минуты.
Использование АТФ как источника энергии возможно только при условии непрерывного синтеза АТФ из АДФ за счет энергии окисления органических соединений. Цикл АТФ-АДФ – основной механизм обмена энергии в биологических системах, а АТФ – универсальная «энергетическая валюта».
Каждая клетка обладает электрическим зарядом, который равен
[АТФ] + ½[АДФ]
[АТФ] + [АДФ] + [АМФ]
Если заряд клетки равен 0,8-0,9, то в клетке весь адениловый фонд представлен в виде АТФ (клетка насыщена энергией и процесс синтеза АТФ не происходит).
По мере использования энергии, АТФ превращается в АДФ, заряд клетки становится равным 0, автоматически начинается синтез АТФ.
Катаболизм – процесс расщепления органических веществ до конечных продуктов (СО2 , Н2О и мочевины). В этот процесс включаются метаболиты, образующиеся как при пищеварении, так и при распаде структурно-функциональных компонентов клеток.
Процессы катаболизма в клетках организма сопровождаются потреблением кислорода, который необходим для реакций окисления. В результате реакций катаболизма происходит выделение энергии (экзергонические реакции), которая необходима организму для его жизнедеятельности.
Анаболизм – синтез сложных веществ из простых. В анаболических процессах используется энергия, освобождающаяся при катаболизме (эндергонические реакции).
3.6.Цикл трикарбоновых кислот (ЦТК). Последовательность реакций. Связь с процессами окислительного фосфорилирования. Понятие о субстратном фосфорилировании. Энергетический эффект. Функции ЦТК.
Цикл Кребса открыт Гансом Кребсом в 1937г. (цикл трикарбоновых кислот), за открытие этого цикла Кребс в 1953г. получил Нобелевскую премию.
В ЦТК включается ацетил-КоА, который образуется в результате окисления жирных кислот, отдельных аминокислот и др. Некоторые метаболиты (глюкоза, глицерин и др.) превращаются в ПВК, из которой образуется ацетил-КоА в процессе окислительного декарбоксилирования:
пируватдегидрогеназный
комплекс
ПВК
НАД (РР), ФАД (В2), ТДФ (В1),
HS- КоА (В3), липоевая кислота
Функции ЦТК.
- ацетил-КоА – в синтезе холестерина и его производных (желчных кислот, стероидных гормонов, провитамина Д3), высших жирных кислот, кетоновых тел, ацетилхолина и др;
- α-кетоглутаровая кислота – глутаминовая, глутамин, ГАМК, пролин, аргинин;
- сукцинил-КоА – гем;
- СО2 – глюкоза, высшие жирные кислоты, пуриновые и пиримидиновые нуклеотиды;
- фумаровая кислота – в синтезе мочевины;
- ЩУК – аспарагиновая кислота, аспарагин, глюкоза, метионин, треонин.
Субстраты ЦТК: изоцитрат, α-кетоглутарат и малат отдают протоны и электроны на НАД-зависимые дегидрогеназы, которые транспортируют протоны и электроны в ЦПЭ на I комплекс, следовательно протоны и электроны проходят все три пункта сопряжения (I, III, IV комплексы). Коэффициент окислительного фосфорилирования для:
- изоцитрат – 3/1=3АТФ;
- α-кетоглутарат – 3/1=3АТФ; 9АТФ в ЦПЭ
- малат – 3/1=3АТФ
Субстрат ЦТК: сукцинат отдает протоны и электроны на сукцинат-фумарат-дегидрогеназу (II комплекс), которая переносит протоны и электроны на убихинон, минуя I комплекс ЦПЭ, следовательно, электроны проходят два пункта сопряжения (III, IV комплексы).
Коэффициент окислительного фосфорилирования для сукцинат – 2/1=2АТФ.
Между сукцинил-КоА и сукцинат образуется 1 молекула АТФ (субстратное фосфорилирование).
Энергетический баланс ЦТК= 9АТФ (ЦПЭ) + 2АТФ (ЦПЭ) + 1АТФ (субстратное фосфорилирование) = 12 молекул АТФ.
4.6. Биологическое окисление, особенности. Структурная организация дыхательной цепи. Последовательность расположения комплексов. Структура и роль их компонентов (ФМН, убихинон, цитохромы). Понятие о редокс-потенциалах.
Биологическое окисление – совокупность протекающих в каждой клетке ферментативных процессов, в результате которых молекулы углеводов, жиров и аминокислот расщепляются, в конечном счете, до углекислоты и воды, а освобождающаяся энергия запасается клеткой в виде аденозинтрифосфорной кислоты (АТФ) и затем используется в жизнедеятельности организма (биосинтез молекул, процесс деления клеток, сокращение мышц, активный транспорт, продукция тепла и др.).
Особенности биологического окисления:
Электроны,
поступающие в ЦПЭ, по мере их продвижения
от одного переносчика к другому теряют
свободную энергию. Значительная часть
этой энергии запасается в АТФ, а часть
рассеивается в виде тепла.
Перенос электронов от окисляемых субстратов
к кислороду происходит в несколько этапов.
В нем участвует большое количество промежуточных
переносчиков, каждый из которых способен
присоединять электроны от предыдущего
переносчика и передавать следующему.
Так возникает цепь окислительно-восстановительных
реакций, в результате чего происходят
восстановление О2 и синтез Н2О.
Убихинон - кофермент Q. Это небелковый переносчик.
Он является жирорастворимым соединением.
Структура КоQ сходна с витаминами К, Е.
Убихинон выполняет коллекторную функцию,
присоединяя ē и протоны от НАДН-дегидрогеназы
(I комплекс), сукцинат-фумаратдегидрогеназы
(II комплекс) и ФАД- зависимых дегидрогеназ,
он обратимо восстанавливается в гидрохинон
(QН2).Содержание убихинона значительно
превосходит количество других компонентов
ЦПЭ. Например, на 1 молекулу НАД+ приходится 50молекул КоQ.От убихинона
происходит транспорт только электронов
на цитохромы.
Цитохромы имеют ряд особенностей:
1)Цитохромы в ЦПЭ располагаются в порядке
возрастания окислительно-
2)Железо в цитохромах способно изменять
свою степень окисления, поэтому цитохромы
в ЦПЭ транспортируют только электроны.
В транспорте двух электронов принимают
участие две молекулы каждого вида цитохромов,
так как одна молекула цитохрома может
переносить только один электрон.
5.6.Окислительное фосфорилирование. Сопряжение окисления (дыхания) и фосфорилирования (теория Митчелла).Vкомплекс-АТФ-аза. Коэффициент окислительного фосфорилирования Р/О. Дыхательный контроль. Так как электроны всегда стремятся переходить от электроотрицательных систем к электроположительным, их транспорт по ЦПЭ к кислороду сопровождается относительно большим снижением свободной энергии.
В ЦПЭ можно выделить 3 участка, в которых перенос электронов сопровождается относительно большим снижением свободной энергии. Это количество свободной энергии необходимо для синтеза АТФ из АДФ и фосфата (фосфорилирование).
Процесс переноса электронов по ЦПЭ и синтез АТФ энергетически сопряжены.
Синтез АТФ из АДФ и Н3РО4 за счет энергии переноса электронов по ЦПЭ называют окислительным фосфорилированием.
Механизм сопряжения окончательно не выяснен, наиболее обоснованной является хемиосмотическая теория Митчелла, предложенная в 1961г.
Перенос электронов по ЦПЭ от НАДН к кислороду сопровождается выкачиванием протонов из матрикса митохондрий через внутреннюю мембрану в межмембранное пространство.
Протоны, перенесенные из матрикса в межмембранное пространство, не могут вернуться обратно в матрикс, так как внутренняя мембрана не проницаема для протонов.
Таким образом, создается протонный градиент, при котором концентрация протонов в межмембранном пространстве больше, а рН меньше, чем в матриксе. Кроме того, каждый протон несет положительный заряд, и вследствие этого появляется разность потенциалов по обе стороны мембраны: отрицательный заряд – на внутренней стороне, положительный заряд – на внешней. В совокупности электрический и концентрационный градиенты составляют электрохимический потенциал ΔμН+ - источник энергии для синтеза АТФ.
Энергия электрохимического потенциала (ΔμН+) используется для синтеза АТФ, если протоны возвращаются в матрикс через ионные каналы АТФ-синтазы (V комплекс).
Наиболее активный транспорт протонов в межмембранное пространство, необходимый для образования ΔμН+ происходит на участках ЦПЭ, соответствующих расположению комплексов I, III, IV. Эти участки называют пунктами сопряжения дыхания и фосфорилирования, где и происходит синтез АТФ.
V комплекс – АТФ-синтаза.
Это интегральный белок внутренней мембраны митохондрий. Он расположен в непосредственной близости к дыхательной цепи. АТФ-синтаза состоит из двух белковых комплексов.
Гидрофобный комплекс F◦ погружен в мембрану. Он служит основанием, которое фиксирует АТФ-синтазу в мембране.