Шпаргалка по биохимии

Автор работы: Пользователь скрыл имя, 11 Марта 2014 в 22:32, шпаргалка

Краткое описание

Работа содержит ответы на вопросы для экзамена по "Биохимии".

Прикрепленные файлы: 1 файл

biokhimia_otvety.doc

— 8.64 Мб (Скачать документ)

 

4.5.Кальций как вторичный  мессенджер  гормонов.  Кальмодулин. Образование  и действие инозитолтрифосфата (ИФ3)и диацилглицерола (ДАГ) как внутриклеточных сигнальных компонентов действия гормонов

вазопрессин и адреналин, образуя комплекс с соответствующим рецептором  через активацию соответствующего G-белка, активируют фосфолипазу «С», в результате чего в клетке появляются вторичные посредники ДАГ, ИФ3. Молекула ИФ3 стимулирует высвобождение Са2+ из ЭР (эндоплазматический ретикулум). Са2+ связывается с белком кальмодулином. Этот комплекс активирует Са2+- кальмодулинзависимуюпротеинкиназу. Ионы Са2+ и ДАГ активируют протеинкиназу «С».

 

 

5.5. Гормоны коры надпочечников. Химическое строение. Изменение метаболизма при гипер-, гипокортицизме (болезнь Аддисона, болезнь Иценко-Кушинга).

У 2-х месячного эмбриона масса надпочечников  равна массе почки и представлена в основном корой, продуцирующей андрогены (фетальная кора). Мозговое вещество еще не выявляется. После рождения и до года жизни идет уменьшение массы надпочечников до 4-3,5 г. После 1 года жизни вновь начинается увеличение массы надпочечников и к 10-15 годам их масса достигает 8-9 г. Фетальная кора полностью исчезает к 3-4 годам.

Функциональная активность коры надпочечников в различные периоды жизни неодинакова. С мочой в первые два – три дня у новорождённого выводятся в основном метаболиты материнских гормонов. К 4-му дню жизни ребенка происходит снижение экскреции и продукции стероидов. В это время возможно проявление клинических признаков недостаточности надпочечников. Но уже к 10-му дню жизни происходит активация синтеза гормонов коры надпочечников и улучшение общего состояния ребенка.

Общим предшественником всех кортикостероидов служит холестерин. При его синтезе образуется более 40 метаболитов, различающихся по структуре и биологической активности. Основными кортикостероидами, обладающими выраженной гормональной активностью, являются кортизол – глюкокортикоид, альдостерон -  минералокортикоид и андрогены. Стероидные гормоны транспортируются  кровью в комплексе со специфическими транспортными белками. Скорость синтеза и секреции кортизола регулируется гипоталамо-гипофизарной системой по механизму обратной связи.

Глюкокортикоиды повышают уровень глюкозы в крови, по механизму хронической регуляции способствуют синтезу ферментов глюконеогенеза. Минералокортикоиды – задерживают ионы Na+, Cl¯ и воду в организме ( увеличивая обратное всасывание) и способствуют выведению из организма ионов К+.

Катаболизм гормонов коры надпочечников происходит прежде всего в печени. Здесь протекают реакции гидроксилирования, окисления и восстановления гормонов. Продукты катаболизма кортикостероидов (кроме кортикостерона и альдостерона) выводятся с мочой в форме 17-кетостероидов. Эти продукты метаболизма выделяются преимущественно в виде коньюгатов с глюкуроновой и серной кислотами.

У мужчин 2/3 кетостероидов образуется за счет кортикостероидов и 1/3 – за счет тестостерона (всего 12-17 мг/сут). У  женщин 17-кетостероиды образуются преимущественно засчет кортикостероидов (12-17 мг/сутки).

Гипофункция гормонов коры надпочечников (гипокортицизм) – болезнь Аддисона или бронзовая болезнь развивается в результате туберкулезного или аутоиммунного повреждения. Клинические проявления: гипогликемия, выделение из организма большого количества ионов Na+, Cl¯ и воды (поносы), обезвоживание,   гипотония (понижение артериального давления), задержка в организме  ионов К+. При этом наблюдается усиленная пигментация кожи. Это связано с тем, что по механизму обратной связи в гипофизе вырабатывается много АКТГ, который стимулирует выработку  пигмента кожи меланина.

Гиперфункция гормонов коры надпочечников (гиперкортицизм) – болезнь Иценко-Кушинга или стероидный диабет, сопровождающийся гипергликемией, глюкозурией, в организме в большом количестве задерживаются ионы Na+, Cl¯ и воды. Это приводит к отекам (лунообразное лицо), к повышению артериального давления.

6.5. Гормоны поджелудочной железы. Инсулин,глюкагон, структура. Механизм их действия. Сахарный диабет. β-клетками поджелудочной железы вырабатывается гормон инсулин из предшественника проинсулина. В свою очередь проинсулин образуется из препроинсулина. Превращение предшественников в инсулин происходит в процессе частичного протеолиза.

Молекула инсулина состоит из двух полипептидных цепей, соединеных между собой в двух точках дисульфидными мостиками. Цепь А состоит из 21 аминокислотного остатка, цепь В – из 30 аминокислотных остатков.

Гормон инсулин вырабатывается, когда уровень глюкозы в крови повышается (гипергликемия), при этом он понижает содержание глюкозы.

Инсулин увеличивает проницаемость клеточных мембран по отношению к глюкозе. Инсулин дисульфидными мостиками соединяется с SH-группами мембраны клетки и в результате из пластинчатой мембраны образуется глобулярная и глюкоза проходит внутрь клетки.

Инсулин активирует по типу аллостерического взаимодействия фермент гексокиназу, которая катализирует превращение глюкозы в глюкозо-6-фосфат.

 

 

 

              гексокиназа                                           в печени

Глюкоза                     глюкозо-6-фосфат                                   гликоген


 

                                                                  в тканях

                                                                                                     источник энергии

Инсулин по механизму хронической регуляции является индуктором синтеза фермента гексокиназы и репрессором синтеза ферментов глюконеогенеза.

При недостаточном синтезе инсулина возникает инсулинзависимый диабет или диабет первого типа. Уровень глюкозы в крови увеличивается  (гипергликемия), глюкоза появляется в моче (глюкозурия), повышается содержание в крови гликозилированного гемоглобина. В связи с этим у больных сахарным диабетом появляются следующие симптомы: полиурия (частое мочеиспускание), так как глюкоза повышает осмотическое давление крови; полидипсия (жажда, сухость во рту); полифагия (частое употребление пищи, голод), так как глюкоза не окисляется и возникает дефицит энергии.

Гормон глюкагон, состоящий из 29 аминокислотных остатков, секретируется α-клетками поджелудочной железы. Он образуется из предшественника – проглюкагона, который в процессе частичного протеолиза превращается в глюкагон. Глюкагон вырабатывается, когда уровень глюкозы в крови уменьшается (гипогликемия). Глюкагон повышает уровень глюкозы в крови за счет распада гликогена, активируя фермент фосфорилазу по механизму срочной регуляции (аденилатциклазная система). Кроме того, глюкагон стимулирует образование глюкозы из аминокислот путем индукции синтеза ферментов глюконеогенеза.

7.5. Половые гормоны, строение, влияние на обмен веществ и функции половых желез

Женские половые гормоны.

Они синтезируются из холестерина. Место синтеза: яичники, кора надпочечников, семенники, плацента. Женские половые гормоны делятся на две группы, отличающиеся по химической структуре и биологической функции: эстрогены (эстрадиол) и прогестины (прогестерон).

Синтез женских половых гормонов стимулируют ФСГ и ЛГ гипофиза.

Синтез эстрогенов и прогестерона начинается после наступления половой зрелости. Они вызывают развитие вторичных половых признаков. Прогестерон подготавливает слизистую оболочку матки к успешной имплантации яйцеклетки в случае её оплодотворения. При наступлении беременности прогестерон оказывает тормозящее влияние на овуляцию и стимулирует развитие ткани молочной железы. Эстрогены обладают анаболическим действием, стимулируя синтез белка.

Мужские половые гормоны.

Андрогены синтезируются из холестерина. Место синтеза: семенники, кора надпочечников, яичники. Основной гормон - тестостерон. В отличие от эстрогенов андрогены уже в эмбриональном периоде оказывают существенное влияние на дифференцировку мужских половых желез. Во взрослом организме андрогены регулируют развитие мужских вторичных половых признаков, сперматогенез и т. д.

Андрогены обладают значительным анаболическим действием (стимулируют синтез белка во всех тканях, но в большей степени в мышцах).

8.5.Гормоны щитовидной  железы, механизм образования, строение, биологическое действие.  Гипо-, гиперфункция  гормонов (кретинизм, микседема, Базедова  болнзнь ). Эндемический зоб. Роль  гормонов в регуляции обмена  кальция и фосфатов у детей (паратгормон, кальцитонин, кальцитриол).

Паратгормон, состоящий из 84-аминокислотных остатка, он является антагонистом кальцитотина, так как увеличивает уровень кальция в крови за счет деминерализации костной ткани (вымывание солей кальция). Кроме того, он увеличивает реабсорбцию кальция в почечных канальцах и уменьшает реабсорбцию фосфатов. Это приводит к уменьшению фосфатов в крови (гипофасфатемия), что способствует активации фермента – фосфатазы, которая также вымывает фосфорно-кальцевые соли из костной ткани. Синергистом  паратгормона является кальцитриол - активная форма витамина Д3, который, кроме перечисленных выше механизмов, влияет на синтез кальций – связывающего белка в кишечнике. Зачаток щитовидной железы выявляется у плода уже к концу первого месяца беременности. Фолликулы в ткани железы отмечается  на 6-7 недели развития зародыша. С 9-11 недели в фолликулах уже появляются капли коллоида и с этого момента железа способна задерживать йод. Щитовидная железа новорожденного имеет массу 1-5 г. До  6 месячного возраста масса щитовидной железы уменьшается, а затем до 5-6 летнего возраста начинается бурное её увеличение. Затем рост щитовидной железы вновь замедляется вплоть до препубертатного периода. В это время рост её снова ускоряется. Окончательное развитие железы заканчивается к 15 годам.

Щитовидная железа состоит из множества полостей – фолликулов, заполненных вязким секретом – коллоидом. В этих фолликулах из аминокистоты-тирозина и свободного йода, поступающего с пищей и водой, синтезируются йодтиронины, входящие в составе белка тиреоглобулина. Тиреоглобулин-гликопротеин содержит 115 остатков – тирозина, синтезируется в базальной части клетки и хранится во внеклеточном коллоиде, где происходит йодирование остатков тирозина  и образование йодтиронинов.

Под действием тиреопероксидазы  окисленный  йод реагирует с остатками тирозина с образованием монойодтиронинов (МИТ) и дийодтиронинов (ДИТ). Две молекулы ДИТ  конденсируются с образованием тироксина (Т4), а МИТ и ДИТ – с образованием трийодтиронина (Т3). Йодтиреоглобулин транспортируется в клетку путем эндоцитоза  и гидролизуется ферментами лизосом с освобождением Т3 и Т4.

Синтез йодтиронинов стимулируется ТТГ гипофиза.

Йодтиронины регулируют:

  • рост, развитие и дифференцировку тканей;
  • энергетический обмен;
  • обмен углеводов;
  • обмен липидов;
  • обмен белков;
  • водно-электролитный обмен и др.

Гипофункция щитовидной железы в раннем возрасте приводит к развитию кретинизма (остановка роста, уродливое непропорциональное строение тела, умственная отсталость).

Гипофункция щитовидной железы во взрослом состоянии – микседема (слизистый отек). Клинические проявления: отеки (нарушается водно-электролитный обмен), патологическое ожирение, выпадение волос, зубов. Основной обмен при этом понижен.

Гиперфункция щитовидной железы  - диффузный токсический зоб (базедова болезнь) сопровождается экзофтальмом (пучеглазие), тахикардией, зобом (увеличенная щитовидная железа),  основной обмен при этом усилен. Повышена  температура тела, больные раздражительны, у них потные ладони, они испытывают чувство голода. Это связано с тем, что тироксин является разобщителем окисления и фосфолирования.

Эндемический зоб – заболевание, связанное с недостатком йода в пище, воде. Это приводит к компенсаторному увеличению массы щитовидной железы за счет разрастания соединительной ткани.

В клетках щитовидной железы синтезируется также гормон – кальцитонин, состоящий из 32 – аминокислотных остатков. Он регулирует фосфорно-кальциевый обмен. Кальцитонин уменьшает содержание кальция в крови за счет торможения выхода его из костной ткани и стимулирует экскрецию кальция с мочой

 

 

.

1.6. Этапы обмена веществ. Катаболизм основных пищевых веществ- углеводов, жиров, белков. Специфические пути катаболизма (до образования пирувата и ацетил-КоА из углеводов, аминокислот и жирных кислот. Общий путь катаболизма(цикл Кребса).Цепь переноса электронов (дыхательная цепь)

 

 

Живые организмы находятся в постоянной и неразрывной связи с окружающей средой.

Эта связь осуществляется в процессе обмена веществ.

Обмен веществ (метаболизм) – совокупность всех реакций в организме.

Промежуточный обмен (внутриклеточный метаболизм) – включает 2 типа реакций: катаболизм и анаболизм.

Катаболизм – процесс расщепления органических веществ до конечных продуктов (СО2 , Н2О и мочевины). В этот процесс включаются метаболиты, образующиеся как при пищеварении, так и при распаде структурно-функциональных компонентов клеток.

Процессы катаболизма в клетках организма сопровождаются потреблением кислорода, который необходим для реакций окисления. В результате реакций катаболизма происходит выделение энергии (экзергонические реакции), которая необходима организму для его жизнедеятельности.

Информация о работе Шпаргалка по биохимии