Шпаргалка по биохимии

Автор работы: Пользователь скрыл имя, 11 Марта 2014 в 22:32, шпаргалка

Краткое описание

Работа содержит ответы на вопросы для экзамена по "Биохимии".

Прикрепленные файлы: 1 файл

biokhimia_otvety.doc

— 8.64 Мб (Скачать документ)

1.1 вопрос. Предмет и задачи биологической  химии. Место биохимии среди других биологических дисциплин: биохимия как  молекулярный уровень изучения явлений жизни. Основные разделы и направления в биохимии: биоорганическая химия. Динамическая и функциональная биохимия, молекулярная биология. Биохимия и медицина(мед. биохимия).

Биохимия - фундаментальная теоретическая медицинская наука, занимающаяся изучением химических реакций и процессов, протекающих в живых организмах. Успешное развитие биохимии позволяет решить проблемы сохранения здоровья человека, выяснить причины различных болезней и изыскать пути их эффективного лечения.

Биологическая химия - наука, изучающая природу веществ, входящих в состав живых организмов, их превращения, а также связь этих превращений с деятельностью органов и тканей в условиях нормальной жизнедеятельности и патологии.

Главной целью биологической химии является формирование системных знаний о закономерностях и химическом строении основных веществ организма и молекулярных основах биохимических процессов, лежащих в основе жизнедеятельности организма в норме и патологии.

Исторически сложились три этапа развития биохимии. Статическая биохимия изучает состав, структуру и свойства выделяемых биологических соединений.

Главная задача биохимии состоит в том, чтобы достичь полного понимания на молекулярном уровне природы химических процессов, связанных с жизнедеятельностью клеток. Для её решения необходимо выделить из клеток многочисленные соединения, определить их структуру и установить их функции. (В качестве примера можно указать на многочисленные исследования, направленные на выяснение основ мышечного сокращения и ряда сходных процессов.) В итоге удалось выяснить ряд аспектов молекулярных основ мышечного сокращения.

Динамическая биохимия исследует превращения веществ в организме и значение этих превращений для процессов жизнедеятельности.

Функциональный этап связан с изучением связи химических процессов с физиологическими функциями.

Биоорганическая химия занимает положение, пограничное с органической химией, в отличие от которой изучает прежде всего те свойства соединения, которые непосредственно связаны с его функцией в организме. Кроме того. Биоорганическая химия, исходя из функций отдельных   соединений в организме и механизма их действия, разрабатывает принципы создания синтетических биологически активных соединений, т.е. веществ, определенным образом изменяющих функции организма( лекарства, избирательно действующие инсектициды и т. д.)

Мед. биохимия  изучает молекулярные основы развития и функционирования здорового человеческого организма, молекулярные  механизмы болезней, биохимические методы диагностики и лечения(клиническая биохимия). Биохимическую экологию человека.

1.2 вопрос. Белки, понятие, биологическая роль в детском организме. Физико – химические       

свойства  белков:   молекулярная масса, растворимость, гидратация. Осаждение      

белков: высаливание, денатурация. Механизм, факторы, обратимость, применение в    

медицине. 

 Особая роль  в жизнедеятельности живых организмов принадлежит белкам. От родителей детям передается генетическая информация о специфической структуре и функциях всех белков данного организма. Синтезированные  белки выполняют многообразные функции: ускоряют химические реакции, выполняют транспортную, структурную, защитную функции, участвуют в передаче сигналов от одних клеток другим и таким образом реализуют наследственную информацию.

 Белки - составная часть всех живых организмов. Биологическая роль белков, незаменимость в питании.

 Белки - высокомолекулярные азотосодержащие вещества, построенные из остатков аминокислот, соединенных между собой пептидными связями. Белки - носители жизни, они наделены множеством уникальных функций, присущих только им: пластической, регуляторной, каталитической, рецепторной, защитной и др. Эти функции не могут быть заменены ни углеводами, ни жирами. Их незаменимость в питании определяется ещё и биологической ценностью.

Живая  природа характеризуется рядом свойств, отличающих её от неживой природы, и почти все эти свойства обусловлены наличием белков. Прежде всего для живых организмов характерны широкое разнообразие белковых структур и их высокая упорядоченность. Способность живых организмов к воспроизведению себе подобных, сократимость, движение- имеют прямое отношение к белковым структурам. Жизнь организма немыслима без обмена веществ, постоянного обновления составных частей живого организма ,т.е. без процессов анаболизма и катаболизма, в основе которых лежит деятельность каталитически активных белков- ферментов.

Энгельс –« Повсюду , где мы встречаем жизнь, мы находим, что она  связана с каким- либо белковым телом, и повсюду, где мы встречаем какое- либо белковое тело, не находящееся в процессе разложения, мы без исключения встречаем и явления жизни». Также ему принадлежит знаменитое определении понятие жизни «Жизнь- есть способ существования белковых тел…»

Наиболее характерными физико- химическими свойствами белков являются: высокая вязкость растворов, незначительная диффузия,  способность к набуханию в больших пределах, оптическая активность, подвижность в электрическом поле, низкое осмотическое давление и высокое онкотическое давление.

Аминокислотный состав и пространственная организация каждого белка в отдельности различны. Они обладают амфотерными, буферными, коллоидными и осмотическими свойствами.

Молекулярная масса белков колеблется от 6000(нижний предел) до 1000000 и выше в зависимости от количества полипептидных цепей в составе единой молекулярной структуры белка.

Изоэлектрическая точка большинства белков животных тканей лежит в пределах от 5,5 до 7,0. В изоэлектрической точке суммарный заряд белков равен нулю и белки не перемещаются в электрическом поле, наименее устойчивы в растворе и легко выпадают в осадок.

Растворимость различных белков колеблется в широких пределах, что зависит от структуры белка (полярные аминокислоты придают большую растворимость). Альбумины растворимы в воде и слабых растворах солей, протамины - в 60-80-% спирте, а коллаген и кератины нерастворимы в большинстве растворителей.

Стабильность растворам белков придают заряд белковой молекулы и гидратная оболочка. Между зарядом белка и гидратацией существует тесная связь: чем больше полярных аминокислот в белке, тем больше связывается воды. Некоторые белки гидратируются сильнее, а растворяются хуже. Например, коллаген связывает воды больше, чем  многие хорошо растворимые глобулярные белки, но не растворим в воде.

Процесс осаждения белков нейтральными солями (высокие концентрации солей щелочных и щелочноземельных металлов) называется высаливанием. Механизм состоит в том, что добавляемые анионы и катионы солевого раствора снимают гидратную оболочку белков и заряд, являющие факторами устойчивости.

Характерной особенностью белков, полученных высаливанием, является сохранение ими нативных биологических свойств после удаления соли. Высаливание белков является обратимой реакцией, так как осадок белка может вновь раствориться после уменьшения концентрации солей путем диализа или разведением водой.

В медицинской практике для высаливания чаще всего применяют сульфат аммония или натрия (высокие концентрации). Альбумины  осаждаются  при 100% насыщении (NH4)2SO4. Глобулины – в полунасыщенном  растворе (NH4)2SO4.

Высаливание широко используется для разделения и очистки белков в научно-исследовательской работе и медицинской практике.

Разрушение структуры белка и потеря им своих нативных свойств (биологических, физико-химических) называется денатурацией. Осажденный денатурированный белок, в отличие от белка, осажденного путём высаливания,  утрачивает свои нативные свойства. Денатурирующие факторы делятся на: 

1) физические (температура, радиация, ультрафиолетовое излучение)

2) механические (вибрация  и т.д.)

3) химические (концентрированные  кислоты, щелочи, соли тяжелых металлов  и т.д.)

При непродолжительном действии и быстром удалении денатурирующих агентов возможна ренатурация белка с полным восстановлением исходной трехмерной структуры и нативных свойств его молекулы.

             Денатурация  используется для определения белка в моче при  заболеваниях почек (пиелонефрите), мочевого пузыря (цистите), предстательной железы (простатите), а также при отравлении солями тяжелых металлов.

 

             2.2 вопрос. Пептидная теория  строения  белков,  характеристика  пептидной связи. Первичная  структура  белков.  Специфичность  первичной структуры белков.  Конформация пептидных цепей белков (вторичная и  третичные структуры).  Дисульфидные,  водородные, гидрофобные, ионные и другие связи в стабилизации  конформации белковой молекулы.

          Установлено, что при  гидролизе чистого белка, не содержащего примесей, освобождается 20 различных 

α- аминокислот. α- Аминокислоты представляют собой производные карбоновых кислот, у которых один водородный атом, у α- углерода, замещен на аминогруппу (-NH2), например:  

 

               α

      R – CH - COOH

  I

NH2

 

            Все встречающиеся в природе  аминокислоты обладают общим свойством – амфотерностью, т.е. каждая

аминокислота содержит как минимум одну кислотную и одну основную группы. Аминокислоты будут отличаться друг от друга химической природой радикала R, не участвующего в образовании пептидной связи при синтезе белка. Все разнообразие особенностей структуры и функции белковых молекул связано с химической природой и физико-химическими свойствами  радикалов аминокислот. Именно благодаря им белки наделены рядом уникальных функций, не свойственных другим биополимерам, и обладают химической индивидуальностью.

Первичная структура - это последовательное соединение аминокислотных остатков в полипептидную цепь. Она стабилизируется пептидными связями между аминокислотами, обеспечивая прочность ковалентного состава полипептидной цепи. Каждый индивидуальный белок уникален своей первичной структурой. Она определяет последующие уровни организации белковой молекулы.

Стабильность первичной структуры обеспечивается в основном главновалентными пептидными связями; возможно участие и небольшого числа дисульфидных связей.

В полипептидной цепи могут быть обнаружены разнообразные комбинации аминокислот; в полипептидах относительно редки повторяющиеся последовательности.

Каждый индивидуальный гомогенный белок характеризуется уникальной первичной структурой; частота замены аминокислот приводит не только к структурным перестройкам, но и к изменениям физико- химических свойств и биологических функций.

В некоторых ферментах, обладающих близкими свойствами, встречаются идентичные пептидные структуры (последовательность аминокислот), в особенности в областях их активных центров. Этот принцип структурного  подобия наиболее типичен для ряда протеолитических ферментов- трипсина, химотрипсина и т.д.

Замена или утрата аминокислот в полипептидной цепи приводит к изменению структуры, физико-химических свойств и биологических функций белка. Например, при мутации гена, кодирующего полипептидную β-цепь гемоглобина (Нb) глутаминовая кислота в положении 6 замещается на валин, в результате чего мутантный Hb становится плохо растворим, теряет способность переносить кислород. При этом эритроциты приобретают форму серпа, отсюда название болезни - серповидно-клеточная анемия. В настоящее время расшифрована первичная структура многих белков: гемоглобина, миоглобина, инсулина, иммуноглобулинов, цитохромов, лизоцима, трипсина, химотрипсина и других.

Белки имеют 4 уровня структурной организации.

 Вторичная  структура - это способ свертывания, скручивания, упаковки полипептидной цепи в спиральную или другую конформацию. Она возникает самопроизвольно, автоматически, что зависит от набора аминокислот и их последовательности. Различают 2 типа вторичной структуры: 1-α-спираль и 2 - слоисто-складчатая (β-структура).

α-спираль имеет винтовую симметрию:

а) ход спирали стабилизируется водородными связями между пептидными группами каждого 1-го и  4-го остатка аминокислот.

б) регулярность витков спирали.

в) равнозначность всех аминокислотных остатков независимо от строения их боковых радикалов.

г) боковые радикалы не участвуют в образовании α-спирали.

Высота одного витка (шаг спирали) равна 0,54 нм, в него входят 3,6 аминокислотных остатка, период регулярности равен 5 виткам (18 аминокислотных остатка). Длина одного периода - 2,7 нм.

Очень много в α-спирали цистеина. Благодаря своей SH-группе он может образовать дисульфидные связи между витками спирали.

Другой тип вторичной структуры называется β-структурой. Этот вид обнаружен в белках волос, мышц, ногтей и других фибриллярных белках. Состав таких полипептидных цепей имеет складчатую структуру. Её стабилизируют водородные связи между пептидными группировками отдельных участков цепи, чаще двух или нескольких полипептидных цепей, расположенных параллельно. В β-складчатых слоях отсутствуют S-S-связи (в этих участках нет цистеина). Боковые радикалы выступают наружу по обе стороны складчатого слоя.

Информация о работе Шпаргалка по биохимии