Автор работы: Пользователь скрыл имя, 02 Сентября 2014 в 11:50, курсовая работа
Целью конструкторско-технологической практики является закрепление и углубление полученных знаний, пополнение их новыми сведениями по прогрессивной технологии, применению современного обрабатывающего оборудования, изучению систем автоматизированного проектирования, автоматизации и механизации технологических процессов; накопление практического опыта самостоятельной инженерной деятельности по технологии механической обработки деталей, конструированию технологической оснастки, измерительных и контрольных средств; сборке изделий машиностроения.
Для измерения отклонений шага fptr от среднего значения по колесу используют накладные приборы (схема III на рисунке 11.2.2), с помощью которых шаг Рt определяют как расстояние между базовым 2 и измерительным 3 наконечниками. На измеряемом колесе 4 прибор устанавливают по упорным наконечникам 1 и 5. При измерении сравнивают значения всех шагов с первоначальным шагом, отсчитываемым по шкале головки 6.
Рисунок 11.2.2 – Приборы для контроля плавности работы
Полнота контакта. Размеры пятна контакта определяют либо по следам приработки после некоторого периода работы передачи на контрольно-обкатных станках и приспособлениях, либо по следам краски, оставившей отпечаток на парном колесе. С помощью поэлементных методов измеряют осевой шаг по нормали, отклонение направления зуба, погрешность формы и расположения контактной линии и др. Так, на приборе БВ-5028 (схема I на рисунке 11.2.2) можно контролировать несколько параметров зубчатых колес — отклонения контактной линии Fkr, осевого шага Fpxnr и погрешности шага. Каретка с измерительным наконечником 1, предварительно установленным на угол наклона
контактной линии, перемещается по направляющей 3. При согласованном движении каретки и вращении контролируемого зубчатого колеса 2 наконечник 1 воспринимает непрямолинейность и отклонения от направления этой линии, которые фиксируются самописцем. Отклонение осевого шага воспринимается измерительным наконечником тогда, когда последний перпендикулярен винтовой линии.
Поворот зубчатого колеса на осевой шаг осуществляют с помощью микроскопа с оптическим диском. При измерении отклонений от направления зуба Fbr прямозубых колес на приборах, у которых существует каретка с точными продольными направляющими, измерительный наконечник перемещают вдоль оси измеряемого колеса. При контроле косозубых колес винтовую линию, воспроизводимую в приборе в результате поворота колеса и продольного перемещения измерительного узла или, как в ходомере БВ-5034 (схема II на рисунке 11.2.3), продольного перемещения стола 1 вместе с проверяемым колесом 4, сравнивают с реальной эвольвентой. Согласованность поступательного и вращательного движений колеса обеспечивают с помощью наклонной линейки и охватывающих шпиндель 3 лент, концы которых закреплены на поперечной каретке 2.
Рисунок 11.2.3 – Приборы для контроля полноты контакта
Измерительный узел 5, установленный на станине, можно настраивать на необходимые параметры зубчатого колеса. Микроскоп 6 позволяет осуществлять точную установку линейки 7 на заданный угол. Боковой зазор между неработающими профилями зубьев в собранной передаче можно контролировать с помощью набора щупов, c помощью заложенной между зубьями свинцовой проволочки или методом люфтования. В последнем случае одно из зубчатых колес медленно вращается, а второе при этом совершает высокочастотные колебания, амплитуда которых характеризует боковой зазор. В реальном зубчатом колесе боковой зазор образуется в результате утонения зуба при смещении исходного режущего контура ЕHr на зуб колеса. Это смещение измеряют на тангенциальных зубомерах (схема I на рисунке 11.2.4), имеющих два базовых щупа 1 и 2, измерительный наконечник 3 и показывающий прибор 4. Перед измерением зубомер настраивают на заданный модуль по ролику расчетного диаметра.
С помощью тангенциальных зубомеров контролируют, по существу, положение постоянной хорды а – а относительно линии выступов b - b, а с помощью кромочных зубомеров измеряют толщину зуба S (параметр Ecr) на заданном расстоянии h от линии выступов (схема II на рисунке 11.2.4). Эти зубомеры имеют нониусные, микрометрические или индикаторные отсчетные устройства. В нониусных штангензубомерах требуемое положение постоянной хорды, т. е. координирующей губки 4, устанавливают с помощью нониусной пары
1 - 2, а измерения хорды осуществляют с помощью нониусной пары 7 - 6 путем введения измерительных наконечников 3 и 5 во впадины зубчатого венца.
Рисунок 11.2.4 – Приборы для контроля бокового зазора
Существуют различные приборы для контроля цилиндрических, конических, червячных, червяков и прочих колес станкового и накладного типов, разделяемых по классам точности на три группы: А, АВ и В. Интенсивно разрабатываются полуавтоматические и автоматические приборы, в том числе приборы активного контроля, использующие экранную оптику, цифровой отсчет, запись результатов измерения, машинную обработку результатов, управление производственным процессом и т. п.
11.3 Средства автоматизации по проектируемым технологическим
Необходимо стремится автоматизировать работу приспособлений для повышения производительности, облегчения труда и высвобождения обслуживающих рабочих. При полной автоматизации приспособления и цикла обработки технологическая операция может выполняться без участия рабочего. Он должен лишь своевременно загружать магазин и следить за работой станка и приспособления.
Применение автоматизированных приспособлений позволяет автоматизировать технологические процессы, используя универсальные станки и «превращая » их в полуавтоматы и автоматы. Однако, нужно иметь дополнительно управляющие и транспортирующие устройства.
При конструировании автоматизированных станочных приспособлений особое внимание должно быть обращено на удаление стружки (например с помощью конвейеров и т.д.). Мелкую стружку необходимо удалять из труднодоступных мест струей сжатого воздуха. В других случаях стружку удаляют механически скребками или щетками.
В автоматизированных приспособлениях необходимо исключить возможность неправильной установки заготовки. Для этого необходимо применять блокировочные габариты. При неправильном положении заготовки станок останавливается и обработка прекращается.
12 Изучение оборудования оснащенного системами ЧПУ
Одним из главных направлений автоматизации процессов механической обработки заготовок мелкосерийного и серийного машиностроения является применение станков с числовым программным управлением (ЧПУ). Под числовым программным управлением (ЧПУ) (ГОСТ 20523—80) понимается управление обработкой заготовкой на станке по управляющей программе, в которой данные приведены в цифровой форме. При этом управляющая программа представляет собой совокупность команд на языке программирования, соответствующих заданному алгоритму функционирования станка по обработке конкретной детали.
Станки с ЧПУ представляют собой полуавтоматы или автоматы, все подвижные органы которых совершают рабочие и вспомогательные движения автоматически по заранее установленной программе, записанной на бумажной перфорированной (иногда на магнитной) ленте или диске.
Эффективность применения станков с ЧПУ выражается:
а) в повышении точности и однородности размеров и формы обрабатываемых заготовок, полностью определяемых правильностью программирования и точностью автоматических перемещений соответствующих узлов стайка; это особенно важно при обработке конструктивно-сложных заготовок, имеющих точные фасонные поверхности и большое число выдерживаемых размеров;
б) в повышении производительности обработки, связанной с уменьшением доли вспомогательного времени с 70—80 % для обычных станков с ручным управлением до 40—50 % (при использовании обрабатывающих центров до 20— 30 %), а в некоторых случаях и с интенсификацией режимов резания; в среднем при переводе обработки па станки с ЧПУ производительность возрастает: для токарных станков — в два-три раза, для фрезерных — в три-четыре раза и для обрабатывающих центров (OI.I,) — в пять-шесть раз;
в) в
снижении себестоимости
г) в значительном снижении потребности к высококвалифицированных станочниках, связанном с упрощением изготовления сложных и точных заготовок на настроенных и автоматически работающих станках с ЧПУ, а также с применением их многостаночного обслуживания; в современных условиях острого дефицита высококвалифицированных рабочих-станочников на машиностроительных предприятиях расширение применения станков с ЧПУ способствует решению крупной народнохозяйственной проблемы дальнейшего развития промышленности.
Применение станков с ЧПУ в промышленности страны развивается в двух направлениях:
Первое направление — обработка очень сложных заготовок уникальных деталей, имеющих сложную конфигурацию и различные фасонные поверхности, изготовление которых на традиционных станках невозможно или требует больших затрат времени и труда, и том числе высококвалифицированного или тяжелого физического труда (турбинные лопатки, роторы, фасонные поверхности гребных винтов, рабочих колес гидротурбин и т. п.). Целесообразность применения станков с ЧПУ в подобных случаях бесспорна и не требует особых доказательств.
Второе направление — обработка заготовок обычных машиностроительных деталей с точностью IT6—-1Т8 и шероховатостью Rа = (3÷10) мкм
Современные системы ЧПУ позволяют изменять режимы резания в процессе обработки заготовок внутри отдельных переходов. Это создает принципиально новые возможности оптимизации процессов обработки сложных фасонных поверхностей посредством назначения наиболее рациональных режимов обработки отдельных участков поверхностей,обеспечивая их высокое качество и снижение затрат машинного времени на 20—25 %.
Наличие
на современных станках с ЧПУ
систем, позволяющих производить
ручное редактирование
При установке современных систем ЧПУ и управления приводами достигаются следующие преимущества:
Преимущества технологий для ЧПУ постоянно растут. Они связаны с увеличением "открытости" программ, развитием средств передачи информации и возможностью интеграции с другими инструментами, в том числе и от сторонних производителей.
Одной из распространенных систем для станков с ЧПУ (которая применяется на базовом предприятии) является Siemens Sinumerik 840D.
Siemens Sinumerik 840D – это автоматизированная численная система для управления 20-коорди-натной приводной системой Sinamics S120. Контроллер Sinumerik построен на основе открытого программного обеспечения и оборудования, он предназначен для создания распределенной
автоматизированной системы управления с программируемыми логическими схемами ввода/ вывода и приводами как с участием компьютера, так и без него. Sinumerik разработан для механических, модернизированных, специализированных станков и робототехнических систем. Система отличается возможностью простой передачи данных по интерфейсам USB, Ethernet, программного обеспечения и приложений стандартного персонального компьютера.
13 Подбор и анализ спецчасти курсового проекта
«Анализ технологических условий и эксплуатационного применения наплавляемых поверхностей тел вращения»
13.1 Способы наплавки
Из числа разнообразных способов сварки, имеющих промышленное применение, для наплавки используют только сварку плавлением, удовлетворяющую перечисленным требованиям: 1) обеспечение неглубокого и равномерного проплавления основного металла; 2) образование ровного валика с хорошим внешним видом; 3) отсутствие склонности к возникновению дефектов: несплавлений в местах перекрытия соседних валиков, застреваний шлака в наплавленном металле, подрезов, пор и трещин; 4) высокая технологичность процесса, малая чувствительность к состоянию поверхности и форме наплавляемой поверхности детали; 5) высокая скорость процесса.
С целью повышения производительности и уменьшения глубины проплавления основного металла применяют ряд перечисленных ниже технологических приемов, используемых как при обычной сварке плавлением, так и при наплавке. К этим приемам относятся многоэлектродная сварка (наплавка), использование подогрева наплавочной электродной проволоки электросопротивлением, применение присадочных материалов и поперечных колебаний электрода.
1. Многоэлектродную
наплавку выполняют
Варианты многоэлектродной наплавки:
При наплавке широко применяют многоэлектродные головки, получающие питание от нескольких источников. Многоэлектродную наплавку обычно осуществляют под флюсом или в среде различных защитных газов.