Автор работы: Пользователь скрыл имя, 21 Октября 2012 в 08:06, курсовая работа
Измерение – один из важнейших путей познания природы человека. Они играют значительную роль в современном обществе. Наука, техника и промышленность не могут существовать без измерений. Каждую сек в мире производится 1 млрд.
Введение
Измерение - один из важнейших путей познания природы человека. Они играют значительную роль в современном обществе. Наука, техника и промышленность не могут существовать без измерений. Каждую сек в мире производится 1 млрд. измерительных операции результаты которых используются для обеспечения технического уровня и необходимого качества продукта, безопасности работы транспорта и т.д. Практически нет ни одной сферы деятельности где бы не использовались результаты измерений. Диапазоны измеряемых величин постоянно растут. Например длина измеряется 10-10-10-17 метра, температура 0,5-106 К, сопротивление 10-26-1016 Ом, сила тока 10-16-104 А. С ростом диапазона измеряемых величин возрастает и сложность измерения. Измерения по сути своей перестают быть одноактивным действием, превращают сложную процедуру подготовки эксперимента, интерпретации измеренной информации. В этом случае следует говорить об измерительных технологиях понимающихся как последовательность действий направленных на получение измерительной информации. Другой фактор, подтверждающий фактор измерений - их значимость. Основой любой формы управления, анализа, планирования, контроля и регулирования является достоверная исходная информация, которая может быть получена путём измерения физических величин, параметров и показателей. Только высокая и гарантированная точность результатов измерений может обеспечить правильность применяемых решений.
Современный уровень науки и техники позволяет выполнять многочисленные и точные измерения однако затраты на них равны затратам на исполнительные операции. Важной задачей Метрологии как науки является создание эталонов физических величин имеющих диапазон необходимый для современной науки и техники. Эти эталоны постоянно совершенствуются с учётом последних открытий науки. Стоимость поддержания мировой системы эталонов высока. Сотрудничество с зарубежными странами совместная разработка научных программ Её высокая точность, качество и достоверность единообразия принципов и способов оценки и точность измерения имеет огромное значение. Важную роль в использовании достижений в метрологии в промышленности играют нормативные документы ССМ. Поэтому в процессе изучения курса МСС будут активно использовать последние нормативные материалы госстандартов.
Основные термины
Основные термины сформулированы в ряде действующих нормативных документов (1970 г. введён ГОСТ 16263-70 «Метрология. Термины и определения»). Дальнейшее развитие Метрологии вызвала необходимое уточнения терминов и учёта при этом материалов изданных за рубежом (международный терминологический словарь). 1994 г. введён новый рекомендательный документ «Рекомендации. Метрология. Основные термины и определения», разработан НПО в НИИ Метрологии Д.М. Менделеева.
Метрология - наука об измерениях, метода и средствах обеспечения их единства и требования точности. (Метрология не только наука, но и область практической деятельности.)
Физическая величина - одно из свойств физического объекта общее в качественном отношении для многих физических объектов, но в количественном отношении разная для каждого и них.
Измерение - совокупность операций выполняемых с помощью технического средства хранящего единицу величины, позволяющая сопоставить измеренную величину её единицей и получить значение измеряемой величины.
Единство измерений - состояние измерений при котором их результаты выражены в законных единицах, а погрешности известны с определённой вероятностью и не выходят из дозволенных.
Первым условием обеспечения единства измерений является преставление результатов единицах которые были бы одними и теме же всюду где производится измерения.
Второе условие: необходимость выполнять их так, чтобы «сопровождающие» измерения погрешность их результатов были бы извесны и не выходили бы с заданной вероятностью за установленные пределы.
Погрешность - отклонение результатов измерений от истинного значения измеряемой величины. Δx = хизм - хдейст. Говорят не о погрешности измерения, а о точности. Качественно точность измерения характеризуется близостью к нулю результатов измерения.
Классификация измерений
Измерение как экспериментальные процедуры определяют определённые значения определённых величин разнообразны, что объясняется множеством известных величин, различных характеров изменения их во времени, различными требованиями.
По способу получения информации:
прямые измерения, при которых искомые значения физической величины определяют путём сравнения с мерой этой величины (линейка, вольтметр)
- косвенные. При которых искомые значения физической величины определяет на основании результатов других физических величин связанных с искомой величиной некоторых заранее известных функциональных зависимостей (измерение мощности тока)
- совокупные измерения, при которых проводят одновременно измерения нескольких однородных величин с определённой искомой величины путем решения системы уравнения.
- совместные измерения при которых производятся измерения двух или нескольких неоднородных физических величин с целью нахождения зависимости между ними.
Как при совокупных так и при совместных измерений искомые значения находят путём решения уравнений. Поэтому эти методы близки друг к другу и различаются только потому, что при совокупных однородных величины, у совместимы неоднородные. Если провести разделения операций проводимых при совокупных измерениях, то они приводят к прямым, однородные к косвенным.
По характеру измерения величин в процессе измерения:
- Статистические измерения, которые проводятся при практическом постоянстве измеряемой величины (статистический режим).
- Динамическое измерения. Величины изменяются во времени (динамический режим).
К статистическим относятся параметры которые в процессе наблюдения не изменяются во времени или рассматриваются неизменяемыми (размеры обрабатываемой детали, эл-ое напряж)
Динамический режим возникает при измерении не изменяющихся величин непосредственно после включения средства измерения в следствии её инерционности. Кроме того, в современных технологический и др процессах величины могут претерпевать те или иные изменения. К ним относятся измерения параметров периодических и апериодических сигналов изменения которых можно описать только вероятностными закономерностями. Характерными для «чистых» динамических измерениях является то, что результат измерений изменяющийся во времени физической величины представляется совокупностью её значений с указанием момента времени которым соответствует эти измерения.
В других случаях результат динамического измерения может быть представлен некоторым усреднённым числовым значением
Статистические измерения связанны с определением характеристик случайных процессов, шумовых сигналов и т.д.
По количеству измерительной информации:
1. Однократные. При которых число измерений равно числу измеряемых величин. Если измеряется одна величина, то измеряют один раз. При этом иметь ввиду, что руководствоваться одним опытом при измерении той или иной величины не всегда оправдано. Во многих случаях рекомендуется выполнить не менее двух-трёх измерений которые позволяют избежать грубых ошибок - промахов. При этом результат измерений, т.е. значение физической величины получены при измерении, есть среднее из этих двух-трёх расчётов.
2. Многократные. При которых число измерений больше числа измеряемых величин в n/m раз, где n - число измерений каждой величины, m - число измеряемых величин. Обычно для многократных измерений n>=3. Многократные изменения проводят с целью уменьшения влияний случайных составляющих погрешностей измерения.
По отношению к основным единицам измерения:
1) абсолютные. При которых результат измерения основывается на прямых измерениях одной или нескольких основных величин, и (или) использовании физических констант.
2) Относительные. При которых производятся измерения отношение измеряемой величины к некоторой однородной величине играющей роль единицы или измерения величины по отношению к однородной величине принимаемой за исходную.
Основные характеристики измерений.
К основным характеристикам измерений относятся:
1. Применяемые при тех или измерениях принципы измерения.
2. Методы измерения.
3. Точность измерения.
1. Принципы измерений - физическое явление положенное в основу измерения. Рассмотрим некоторые широко распространённые явления:
а) пьезоэлектрический эффект, заключается в возникновении ЭДС на грани
некоторых кристаллов (кварц) под действием внешних
сил (сжатия, растяжения). Наибольшее применение
для измерения нашли Кварц и пьезокерамика,
обладающая достаточно высокой механической
прочностью и температурной зависимостью.
Пьезоэлектрический эффект обратим: ЭДС
приложенная к пьезокристаллу вызывает
механическое напряжение на их поверхности.
Измерительно-
б) Термодинамический эффект, широко применяется для измерения температуры. Два вида использования: 1) используют свойства изменения R металлов и полупроводников при изменении температуры (медь, платина), соответствующий измерительный преобразователь называется терморезистором. Измерительные элементы п.п. преобразователя термисторы. С увеличением температуры R уменьшается, а термометра увеличивается. Др способами использования термоэффекта является термоЭДС возникающая в термопаре.
г) Фотоэлектрический эффект. Для измерений используется внешний и внутренний фотоэффекты. Внешний возникает в вакуумированном баллоне, имеющим анод и фотокатод. При освещении фотокатода в нём под влиянием фотонов света эмитируются электроны. В случае наличия между анодом и фотокатодом электрического напряжения эмитируемые электроны образуют эклектический ток, называемый фототоком. Внутренний возникает при освещении слоя между некоторым полупроводниками и металлами. В этом случае возбуждается ЭДС у ряда полупроводников под влиянием светового излучения, изменяется эклектическое сопротивление. Иногда это называется фоторезистивным эффектом, а устройство фоторезистор. «Темновое», при отсутствии света, сопротивление R достаточно большое 108 Ом, при освещении оно может уменьшаться до 105 Ом. Фоторезисторы обладают высокой чувствительностью.
2. Методы измерения. Метод измерения - совокупность используемых способов сравнений измеряемой величины с её единицей в соответствии с выбранной (реализованной) принципов измерений. Все измерения делятся на методы непосредственной оценки и методы сравнения. Использование метода непосредственной оценки позволяет определить значение величины непосредственно по отчётному устройству показывающему средства измерения. Мера отражающая единицу измерения в измерении не участвует. Её роль в показе измерения играет шкала проградуированная при его производстве с помощью достаточно точных средств измерений. Метод сравнения с мерой предусматривает сравнение измеряемой величины с равной мерой. Методы сравнения обычно реализуются различными путями. К основным из них можно отнести: дифференциальный метод, нулевой метод, метод измерения замещением метод совпадений.
Дифференциальный - метод, при котором измеряемая величина сравнивается с однородной величиной имеющей известное значение, воспроизводимой мерой. Точность этого метода может быть высокой и определяется точностью величины воспроизводимой меры.
Нулевой - метод является частным случаем дифференциального метода, заключается в том, что результаты воздействия измерения измеряемой величины взаимно уравновешивается до нулевого показателя. Метод измерения замещением заключается в том, что измеряемая величина замещается мерой с известным значением величины. Метод совпадений заключается в том, что разность между измеряемой величиною и известной величиной измеряют используя совпадения отметок их шкал.
Понятие о точности
Точность измерения определяется близостью к нулю погрешности измерений, т.е. близость результатов измерений к истинному значению измеряемой величины. Но если погрешность измерений можно количественно выразить в единицах измеряемой величины или в отношении погрешности и к результатам измерения, то точность измерений количественно результат измерения определить нельзя. Поэтому не говорят о высокой, средней, низкой точности измерения в качественном отношении.
Классификация средств измерения
Средства измерений представляют собой техническое устройство, предназначенное для измерений имеющие в этих целях нормирования метрологические характеристики воспроизводящие и / или хранящие единицу физической величины. В отличие от средства измерения от других технических устройств является главным образом наличие меры и нормированных технической характеристики к средствам.
1. меры предназначенные для воспроизведения и / или хранения физической величины одного или нескольких заданных размеров и к мере относится меры, весовые меры, нормальные. Мера, воспроизводящая официальную величину одного размера, называются однозначными, воспроизводящая величина различных размеров - многозначных (миллиметровая линейка). Применяют также меры, наборы мер и магазины мер. Набор мер - комплект однородных мер разного размера, предназначаемых для применения в различных сочетаниях. Магазин мер - наборы мер, конструктивно объединённых в одно устройство в котором предусмотрено ручное или автоматизированное соединение в одно целое. К однозначным мерам относятся стандартные образцы и стандартные вещества. Стандартные образцы представляют собой специально оформленное тело, установленного по результатам метрологической аттестации значение физической величины которые характеризуют свойства или состав материала вещества.