Автор работы: Пользователь скрыл имя, 20 Марта 2014 в 12:49, курсовая работа
Цель курсовой работы: изучение классификационной экспертизы, рассмотрение газовой хроматографии, а так же изучить особенности экспертизы масложировых товаров. Задачи: рассмотреть особенности и правила классификационной экспертизы, понять, в чем заключается процесс газовой хроматографии, понять принцип работы, а так же рассмотреть показатели, которые рассматриваются при экспертизе масложировых товаров.
Введение2
Классификационная экспертиза 3
Газовая хроматография 13
Особенности экспертизы масложировых товаров 17
Заключение23
Список использованной литературы 24
В связи с этим вторая часть правила За обязывает оценивать обе позиции как равнозначные в случаях, когда каждая рассматриваемая позиция включает лишь часть материала, из которого изготовлен товар. В таких случаях следует применять правило 3б, которое позволяет классифицировать товар в соответствии с тем материалом, который придает изделию основное свойство (в нашем случае - пластмасса, исходя из ее доли в массе и стоимости товара).
В случаях, когда правило 3б неприменимо (например, если объем и стоимость двух или более материалов, из которых изготовлен товар, одинаковы), следует использовать правило Зв.
Часто возникает "конфликт" между двумя товарными позициями: в первой содержится описание материала, из которого изготовлен товар, а во второй - описание выполняемой этим товаром функции. Как правило, последняя содержит более конкретное описание. Например, такое изделие, как полицейская дубинка, более подробно описано в товарной позиции 9304, чем в субпозиции 401700, где оно может рассматриваться только как "изделие из твердой резины".
Газовая хроматография
Адсорбция газа на твердом адсорбенте также подчиняется уравнению изотермы адсорбции. Адсорбционная хроматография является весьма эффективным способом разделения компонентов газовой смеси. В принципе с помощью хро-матографической методики можно разделить любые газовые смеси. Однако практическое разделение достигается далеко не всегда вследствие наложения диффузионных, кинетических и других факторов, существенно осложняющих процесс адсорбции.
Основными узлами хроматографа являются дозатор, хромато-графическая колонка, детектор. Кроме того, в хроматографе имеются устройства для подачи газа-носителя, преобразования импульса детектора в соответствующий сигнал и некоторые другие.
Хроматографические колонки весьма различны по форме, размерам и конструкционным материалам. Применяются прямые, спиральные и другие колонки длиной от 1 - 2 м до нескольких десятков метров, внутренний диаметр колонок составляет обычно несколько миллиметров. В зависимости от свойств анализируемой системы в качестве конструкционных материалов для колонок используют сталь, латунь, стекло и др.
Детектор предназначен для обнаружения изменений в составе газа, прошедшего через колонку. Показания детектора обычно преобразуются в электрический сигнал и передаются фиксирующему или записывающему прибору, например на ленту электронного потенциометра, компьютер.
Детекторы подразделяют на дифференциальные, которые отражают мгновенное изменение концентрации, и интегральные, суммирующие изменение концентрации за некоторый отрезок времени. К группе дифференциальных относятся термохимический, пламенный, ионизационный и некоторые другие детекторы, катарометры и т.д. Один из наиболее распространенных типов дифференциальных детекторов - катарометр. Принцип его работы основан на измерении сопротивления нагретой платиновой или вольфрамовой нити. Сопротивление зависит от состава омывающего газа. Количество теплоты, отводимое от нагретой нити, при прочих постоянных условиях зависит от теплопроводности газа, а теплопроводность смеси газов - от ее состава. Таким образом, чем больше теплопроводность определяемых компонентов смеси будет отличаться от теплопроводности газа-носителя, тем большей чувствительностью будет обладать катарометр.
Наиболее подходящим газом-носителем с этой точки зрения является водород, теплопроводность которого значительно превышает соответствующую характеристику большинства других газов. В пламенно-ионизационных детекторах измеряют электрическую проводимость пламени водородной горелки. Чисто водородное пламя обладает очень низкой электрической проводимостью. При появлении в водороде многих примесей пламя ионизируется пропорционально концентрации примеси, что легко может быть измерено. Высокая чувствительность детекторов этого типа обусловила их широкое применение.
В интегральных детекторах анализируемый газ на выходе из колонки поглощается каким-либо раствором, а затем анализируется поглощающий раствор или оставшийся непоглощенным газ.
Возможности хроматографического определения веществ в газовой фазе значительно возросли с открытием в 1952 г. метода газожидкостной хроматографии. Анализируемая газовая смесь проходит через колонку, наполненную в отличие от адсорбционной газовой хроматографии не просто адсорбентом, а твердым носителем, на поверхность которого нанесен тонкий слой жидкой фазы. Таким образом, с компонентами пробы здесь взаимодействует уже вещество жидкой пленки, а не твердый адсорбент.
Появление жидкой пленки изменяет природу физико-химических процессов в хроматографической колонке. Вместо процесса сорбции газа на твердом адсорбенте в колонке происходит растворение газа в тонкой пленке, находящейся на твердом носителе. Очень важным преимуществом газожидкостной хроматографии является возможность работы в области линейной изотермы, что обеспечивает получение практически симметричных хроматографических пиков.
В качестве твердых носителей применяются инертные вещества с развитой поверхностью, но малой микропористостью, чтобы исключить адсорбцию газа на поверхности. Наибольшее распространение в качестве носителя получили каолин, трепел, тефлон и т.д.
Существенно повышается эффективность разделения в капиллярной хроматографии. Название метода связано с тем, что в качестве хроматографической колонки используется капилляр с внутренним диаметром 0,1 - 0,5 мм и длиной в несколько десятков метров. Жидкая фаза наносится непосредственно на стенку этого капилляра, которая в данном случае играет роль носителя. Условия разделения, реализуемые в процессе капиллярной хроматографии, приводят к получению более четких полос, позволяют применять небольшие дозы анализируемого вещества и сокращают время анализа.
Эффективным оказалось сочетание газовой хроматографии с другими методами исследования: ИК-спектроскопией, масс-спек-трометрией и др., а также использование селективных и последовательно работающих детекторов.
Количественный хроматографический анализ основан на измерении различных параметров пика, зависящих от концентрации хроматографируемых веществ - высоты, ширины, площади и удерживаемого объема или чаще - произведения удерживаемого объема на высоту пика. При достаточной стабильности условий хроматографирования и детектирования определяющим параметром пика можно считать его высоту.
В количественной хроматографии применяются методы абсолютной калибровки и внутренней нормализации, или нормирования. Используется также метод внутреннего стандарта. При абсолютной калибровке экспериментально определяют зависимость высоты или площади пика от концентрации вещества и строят калибровочные графики или рассчитывают соответствующие коэффициенты. Далее определяют те же характеристики пиков в анализируемой смеси и по калибровочному графику находят концентрацию анализируемого вещества. Этот простой и точный метод является основным при определении микропримесей.
При использовании метода внутренней нормализации принимают сумму каких-либо параметров пиков, например высот всех пиков или их площадей, за 100%. Тогда отношение высоты отдельного пика к сумме высот или отношение площади одного пика к сумме площадей при умножении на 100 будет характеризовать процентное содержание компонента в смеси. При таком методе необходимо, чтобы зависимость величины измеряемого параметра от концентрации была одинаковой для всех компонентов смеси.
Широкое применение и большое значение газовой хроматографии в практике вызвано тем, что с ее помощью можно идентифицировать отдельные компоненты сложных газовых смесей и определять их количественно; выполнение анализа не требует больших затрат времени, а метод является достаточно универсальным.
Особенности экспертизы масложировых товаров
В связи с тем что масложировые товары имеют различный химический состав, физические свойства, биологическую ценность и соответственно разные стоимость и назначение, при проведении таможенной экспертизы особое значение приобретает идентификационная экспертиза.
Для установления вида твердых жиров или растительных масел определяют органолептические и физико-химические показатели, а также физические свойства.
Российскими правилами сертификации пищевых продуктов определен перечень показателей, подлежащих подтверждению при идентификации растительных масел и твердых пищевых продуктов (органолептические и физико-химические показатели в соответствии с нормативными документами на конкретный вид масложировых товаров).
Даже при кратковременном хранении в масложировых продуктах могут протекать гидролитические и окислительные процессы, приводящие к их порче. Поэтому в масложировых товарах контролируются те показатели, которые характеризуют эти процессы и могут превысить установленные нормы безопасности (органолептические и микробиологические показатели, кислотное и пероксидное числа, содержание микотоксинов).
Для целей идентификации масложировых товаров используются физические показатели: плотность, показатель преломления, температура плавления и застывания. По этим показателям определяют видовую принадлежность, степень рафинации, наличие фальсификации. Эти методы относят к экспрессным, они не требуют наличия сложных приборов и больших затрат времени.
Плотность масложировых товаров зависит от состава жирных кислот и колеблется от 910 до 970 кг/м3
Числовое выражение плотности находится в корреляционной зависимости от других показателей жира и поэтому дает возможность делать заключение о чистоте, индивидуальных качествах и наличии примесей. Плотность жиров характеризует их природу. Каждый вид жира обычно имеет более или менее постоянный жирнокислотный состав с очень небольшими колебаниями. При различном составе жирных кислот процентное содержание кислорода (как наиболее тяжелого элемента) в молекуле глицеридов изменяется и находится в обратной зависимости от молекулярной массы предельных кислот и в прямой - от степени ненасыщенности непредельных кислот. Поэтому плотность выше в жирах, содержащих больше ненасыщенных и низкомолекулярных насыщенных жирных кислот, и наоборот. Прогоркание и осаливание жиров увеличивают этот показатель. Плотность масла можно определить с помощью пикнометра, гидростатических весов или ареометра.
Коэффициент преломления (рефракции), так же как и плотность, характеризует природу жира. Его определяют с помощью рефрактометра по предельному углу преломления или полного внутреннего отражения луча. Этот показатель зависит от состава жира и возрастает с увеличением молекулярной массы и непредельности жирных кислот, а также с наличием оксигрупп.
Температура плавления - это температура, при которой жир переходит из твердого состояния в капельножидкое, она зависит от соотношения жирных кислот в молекуле триглицеридов. С увеличением уровня низкомолекулярных и непредельных жиров температура плавления снижается. При окислении жиров с образованием оксикислот и роста молекулярной массы температура плавления повышается.
Температура застывания - это температура перевода жира из жидкого состояния в твердое. Как правило, температура застывания значительно ниже температуры плавления.
Помимо физических показателей важное значение для целей идентификации имеют физико-химические показатели (табл. 17, 18).
В масложировых товарах регламентируется массовая доля влаги и летучих веществ. Этот показатель характеризует суммарное содержание в жирах воды и других веществ, способных испаряться при 100- 150 ºС. В растительных маслах содержится от 0,1 до 0,3 % влаги, в животных и кулинарных жирах - от 0,2 до 0,3, в маргаринах - от 16 до 40 % и выше.
В жировых товарах могут содержаться сопутствующие (неомыляемые) вещества, не реагирующие с щелочами и не разрушающиеся при омылении жиров. К ним относят стеарины, спирты восков, углеводороды и др. В различных видах растительных масел содержание неомыляемых веществ колеблется от 0,2 до 2 %.
При идентификации масел по степени рафинации важное значение имеет показатель, характеризующий содержание фосфатидов и других фосфорсодержащих веществ, который выражается в пересчете на стеароолеолецитин или фосфорный ангидрид. С повышением содержания фосфолипидов увеличивается отстой в маслах, что ухудшает их товарный вид.
Цветное число растительных масел характеризует интенсивность их окраски, а также степень очистки. Цветность определяют сравнением цвета растительного масла с цветом эталонных йодных растворов и выражают количеством миллиграммов йода. Нерафинированные масла имеют более высокое значение цветного числа по сравнению с рафинированными.
Йодное число характеризует содержание в 100 г жира непредельных соединений, выражается в граммах йода, эквивалентного реагенту, состоящему из галогенов и присоединившемуся к жиру. Йодное число характеризует степень ненасыщенности и качество жира.
Информация о работе Особенности экспертизы масложировых товаров