Статистические методы анализа качества производственного процесса

Автор работы: Пользователь скрыл имя, 27 Апреля 2014 в 13:24, курсовая работа

Краткое описание

Статистические методы контроля и управления качеством только тогда будут давать значительный эффект, когда они применяются на всех уровнях: рабочий управляет машиной, технологическим процессом, оператор занимается обслуживанием клиентов, мастер или управляющий - процессами, работниками и т.д., везде нужно овладевать методами выявления недостатков, путей улучшения процессов. Для этого необходима специализированная методология обучения взрослых людей, массовые доступные учебно-методические материалы, способствующие пониманию широким кругом работников особенностей статистических методов, их применения и возможностей.

Содержание

Введение 3
1. Статистическое управление и методы контроля качества производственного процесса 5
2. Использование статистических методов анализа производственных процессов на примере автомобильного завода. 27
2.1 Контроль технологической точности 27
2.2. Использование диаграмм Парето. 34
Заключение 36
Список используемой литературы 37
Глоссарий 38

Прикрепленные файлы: 1 файл

курсовая пшеничная а.м..docx

— 4.11 Мб (Скачать документ)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение

Высшего профессионального образования

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ»

ФИЛИАЛ ТЮМГНГУ В Г. НОВОМ УРЕНГОЕ

 

 

 

Кафедра гуманитарных и

социально-экономических дисциплин

 

 

 

 

КУРСОВАЯ РАБОТА

 

по дисциплине: «ПРОИЗВОДСТВЕННЫЙ МЕНЕДЖМЕНТ»

 

Тема «СТАТИСТИЧЕСКИЕ МЕТОДЫ КОНТРОЛЯ КАЧЕСТВА ПРОИЗВОДСТВЕННОГО ПРОЦЕССА»

 

                         

 

 

 

 

        Выполнила:

                                                                                           студентка 4 курса

                                                                                                      специальности МО-10-1

                                                                                          Пшеничная А.М.

 

Научный руководитель:

           д.с.н., проф. Силин А.Н.

 

 

 

 

 

 

 

 

г. Новый Уренгой

2014г.

Оглавление

 

  
Введение

Актуальность использования статистических методов в различных отраслях современного менеджмента непрерывно возрастает. Это вызвано прежде всего развитием рыночных отношений, конкурентной борьбы на рынках товаров и услуг, требованиями стандартов. В этих условиях резко возросли требования к качеству продукции.

Статистические методы контроля и управления качеством только тогда будут давать значительный эффект, когда они применяются на всех уровнях: рабочий управляет машиной, технологическим процессом, оператор занимается обслуживанием клиентов, мастер или управляющий - процессами, работниками и т.д., везде нужно овладевать методами выявления недостатков, путей улучшения процессов. Для этого необходима специализированная методология обучения взрослых людей, массовые доступные учебно-методические материалы, способствующие пониманию широким кругом работников особенностей статистических методов, их применения и возможностей.

Большое распространение в управлении качеством (под влиянием японских специалистов) получили семь простых методов, применение которых не требует высокой квалификации персонала и позволяет охватить анализ причины большинства возникающих на производстве дефектов.

Цель данной работы – изучить статистические методы управления качеством.

Постановка данной цели обусловила необходимость решения следующих задач:

  • изучить основные понятия о статистическом управлении процессами;
  • рассмотреть статистические методы контроля качества;
  • проанализировать применение статистических методов контроля качества.

Объектом курсовой работы является производственный процесс.

Предметом курсовой работы является статистические методы контроля качества.

Глава 1 посвящена общим вопросам статистического управления процессами и рассматриваются статистические методы контроля качества процесса производства (так называемые «семь простых японских методов качества»). В главе 2 применение методов анализа качества производственных процессов иллюстрируется на конкретных примерах, характерных для производственной деятельности АО «АВТОВАЗ».

 

1. Статистическое управление и методы контроля качества производственного процесса

Процесс - это совокупность взаимосвязанных ресурсов и деятельности, которая преобразует входящие элементы в выходящие [11]. В результате процесса происходит преобразование исходных элементов (материалов, информации), которое увеличивает их ценность за счет применения квалифицированного труда и знаний.

Способность некоторого объекта удовлетворять потребительским запросам покупателей связывается с понятием качество. Различают качество процессов и качество продукции. Качество продукции обусловлено эффективностью изучения спроса, проектирования, изготовления, сопровождения в эксплуатации.

Качество процесса определяется тем, насколько потребительские свойства продукта удовлетворяются на заводском уровне требованиями конструкторской и технологической документации.

Эффективность процесса оценивается как высокое качество выпускаемой продукции и обеспечивается с помощью системы управления.

Понятие "управление качеством" как наука возникло в конце 19-го столетия, с переходом промышленного производства на принципы разделения труда. Принцип разделения труда потребовал решения проблемы взаимозаменяемости и точности производства. До этого при ремесленном способе производстве продукции обеспечение точности готового продукта производилось по образцам или методами подгонки сопрягаемых деталей и узлов. Учитывая значительные вариации параметров процесса, становилось ясно, что нужен критерий качества производства продукции, позволяющий ограничить отклонения размеров при массовом изготовлении деталей.

В качестве такого критерия Ф.Тейлором были предложены интервалы, устанавливающие пределы отклонений параметров в виде нижних и верхних границ. Поле значений такого интервала стали называть допуском.

Установление допуска привело к противостоянию интересов конструкторов и производственников: одним ужесточение допуска обеспечивало повышение качества соединения элементов конструкции, другим – создавало сложности с созданием технологической системы, обеспечивающей требуемые значения вариаций процесса. Очевидно также, что при наличии разрешенных границ допуска у изготовителей не было мотивации "держать" показатели (параметры) изделия как можно ближе к номинальному значению параметра, это приводило к выходу значений параметра за пределы допуска.

В тоже время (начало 20-х годов прошлого столетия) некоторых специалистов в промышленности заинтересовало, можно ли предсказать выход параметра за пределы допуска. И они стали уделять основное внимание не самому факту брака продукции, а поведению технологического процесса, в результате которого возникает этот брак или отклонение параметра от установленного допуска. В результате исследования вариабельности технологических процессов появились статистические методы управления процессами. Родоначальником этих методов был В.Шухарт.[5]

С момента зарождения статистических методов контроля качества специалисты понимали, что качество продукции формируется в результате сложных процессов, на результативность которых оказывают влияние множество материальных факторов и ошибки работников. Поэтому для обеспечения требуемого уровня качества нужно уметь управлять всеми влияющими факторами, определять возможные варианты реализации качества, научиться его прогнозировать и оценивать потребность объектов того или иного качества.

Используемые в сегодняшней практике предприятий статистические методы можно подразделить на следующие категории:

  • методы высокого уровня сложности, которые используются разработчиками систем управления предприятием или процессами. К ним относятся методы кластерного анализа, адаптивные робастные статистики и др.;
  • методы специальные, которые используются при разработке операций технического контроля, планировании промышленных экспериментов, расчетах на точность и надежность и т.д.;
  • методы общего назначения, в разработку которых большой вклад внесли японские специалисты. К ним относятся "Семь простых методов" (или "Семь инструментов качества"), включающие в себя контрольные листки; метод расслоения; графики; диаграммы Парето; диаграммы Исикавы; гистограммы; контрольные карты.

Стремясь наиболее эффективно использовать статистические методы управления качеством, японские специалисты разработали такие процедуры, которые достаточно просты для применения, то есть не требуют специальных знаний, но в то же время дают результаты, позволяющие профессионалам оперативно анализировать и совершенствовать производственный процесс.

Совокупность используемых методов получила название «семь простых методов контроля качества» и содержит:

  • контрольные листки,
  • диаграммы Парето,
  • диаграммы Исикавы.
  • гистограммы,
  • диаграммы рассеивания,
  • контрольные карты,
  • расслоение (стратификация).

Рассмотрим каждый из этих методов.

Контрольные листки. Анализ любого вида деятельности возможен только на основании имеющейся информации, поэтому применение каждого из методов контроля качества должно начинаться со сбора необходимых данных. Прежде всего, необходимо четко сформулировать цель сбора интересующих нас сведений (контроль и регулирование производственного процесса; анализ отклонений от установленных требований; контроль продукции). Затем продумывают, какие типы данных нужно собрать, их характер, частоту и способы измерения, надежность получаемых результатов и т.п. Так как для анализа данных используются различные статистические методы, то в процессе сбора информации следует позаботиться об упорядочении получаемых результатов, чтобы облегчить их последующую обработку. Результаты наблюдений удобнее всего заносить в контрольные листки.

Контрольный листок - это бумажный бланк для первичного сбора информации.

Контрольный листок предназначен для фиксации контролируемых параметров:

  • облегчения процесса сбора данных;
  • автоматического упорядочивания сбора данных для упрощения дальнейшей обработки.

Основные требования, предъявляемые к контрольному листку:

  • простота фиксации результатов наблюдений;
  • наглядность полученных результатов;
  • полнота данных.

Для достижения этих требований необходимо заранее продумать форму контрольных листков и постоянно совершенствовать эту форму с учетом замечаний и пожеланий тех, кто заполняет контрольные листки. Следует стремиться к тому, чтобы при фиксации результатов требовалось производить минимум записей, например, просто делать отметки в нужных графах. Хорошо, когда в результате автоматически получается гистограмма или диаграмма рассеивания. Но при этом контрольный листок должен содержать максимум исходной информации.

Так как полученная информация необходима для последующего анализа причин дефектов, связанных как с несовершенством технологического процесса, так и с различными другими факторами, то следует требовать очень тщательного заполнения всех граф контрольного листка. Пренебрежение какими-либо данными, например, о номере партии или времени измерения исследуемого параметра, может потребовать последующего дополнительного сбора информации, что усложнит работу.

Примеры контрольных листков приведены на рисунках 1.1 - 1.4.[1]

Рис. 1.1. Контрольный листок для регистрации распределения измеряемого параметра в ходе производственного процесса.

На рис. 1.1. показан контрольный листок для регистрации распределения измеряемого параметра в ходе производственного процесса. В данном случае фиксируются изменения в размерах некоторой детали, подвергающейся механической обработке, причем в чертеже был указан размер 8.300 0,008. При заполнении контрольного листка после каждого замера в соответствующей клеточке ставился крест. В результате к концу измерений на контрольном листке оказалась готовая гистограмма.

Рис. 1.2. Контрольный листок видов дефектов

На рис. 1.2. показан контрольный листок для регистрации видов несоответствий, используемый при приемочном контроле некоторой детали. Здесь фиксируются определенные несоответствия, выявляемые контролером и в конце рабочего дня можно быстро подсчитать число и разновидности обнаруженных несоответствий. Такой контрольный листок удобен для последующего построения диаграммы Парето, но он не дает возможности расслоения данных, то есть разбивки их на группы, например, по времени или месту изготовления детали.

Если предполагается последующий дополнительный анализ информации, лучше использовать листок, приведенный на рисунке 1.3. На этом листке регистрируются несоответствия в деталях (вал КПП), изготовленных на станках 003.716.33 и 003.718.33 фирмы FISCHER с учетом станков, рабочих, дней изготовления и типов дефектов. Здесь сразу видно, что больше всего брака допускает рабочий В, а самым неудачным днем оказалась среда. Последующее исследование показало, что в среду смазывающе-охлаждающая жидкость была низкого качества.[1]

Рис. 1.3. Контрольный листок причин дефектов

Для выявления причин несоответствий бывает удобно не просто фиксировать количество и виды несоответствий, но и отслеживать место их локализации. Пример соответствующего контрольного листка приведен на рисунке 1.4. При контроле отливок фиксируются не только наличие, но и месторасположение раковин. В результате анализа такого контрольного листка проще выявлять возможные причины возникновения исследуемого дефекта.

Рис. 1.4. Контрольный листок локализации раковин

Диаграммы Парето. При производстве продукции неминуемо приходится сталкиваться с потерями (некачественные изделия и затраты, связанные с их производством). В большинстве случаев подавляющее число несоответствий и связанных с ними потерь возникает из-за относительно небольшого числа причин. Этот постулат положен в основу анализа Парето, который предназначен для разделения проблем качества на немногочисленные существенно важные и многочисленные несущественные.

Диаграмма Парето - это графическое представление степени важности причин или факторов, влияющих на исследуемую проблему.

Информация о работе Статистические методы анализа качества производственного процесса