Контрольная работа по "Механизации"

Автор работы: Пользователь скрыл имя, 15 Сентября 2014 в 18:37, контрольная работа

Краткое описание

Опишите устройство и работу прерывателя – распределителя батарейной системы зажигания.
Опишите общую принципиальную схему электрооборудования трактора или автомобиля.
Опишите общее устройство и работу гидроусилителя рулевого управления трактора МТЗ – 80.
Опишите общее устройство культиватора – растениепитателя (марка по выбору).Правила установки рабочих органов. Ответ поясните схемой.
Начертите схему зерноочистительной машины СМ – 4 и объясните её работу. Какую регулировку имеют триеры?
Начертите схему устройства и опишите работу автоматизированной водоподъёмной установки типа ВУ.

Прикрепленные файлы: 1 файл

механизация.docx

— 419.07 Кб (Скачать документ)

 

 

5.Начертите  схему зерноочистительной машины  СМ – 4 и объясните её работу. Какую регулировку имеют триеры?

Семяочистительная машина СМ-4 предназначена для очистки и сортировки зерновых, зернобобовых, технических, масличных культур и семян трав, используемых как для посева, так и для продовольственных целей. Машина очищает и сортирует зерновой материал (ворох) засоренностью до 10% и влажностью до 16%, получаемый после комбайна или после предварительной очистки, например, на машинах ОВС-25 или ОВП-20А. 
Машина применяется во всех сельскохозяйственных зонах страны и предназначена для работ как на открытых токах, так и в помещениях-складах. 
Использование всех преимуществ машины и достижение высоких показателей в работе возможны лишь при правильной ее эксплуатации. 
Настоящее руководство по эксплуатации предназначено для подробного ознакомления с устройством, технической характеристикой, правилами техники безопасности и противопожарной безопасности, регулированием, техническим обслуживанием и хранением семяочистительной машины СМ-4. 

УСТРОЙСТВО И РАБОТА МАШИНЫ

Семяочистительная машина СМ-4 (рис. 1) состоит из загрузочного скребкового транспортера, решетного стана, воздушноочистительной части, элеватора — двухпоточной нории, триерных цилиндров, механизма самопередвижения. 
Машину обслуживают два человека: механик и рабочий. 
Все регулировки вынесены в зону обслуживания. 
Технологический процесс (рис. 2) протекает следующим образом. При движении машины вдоль вороха шнековые питатели захватывают зерновой материал и подводят к подъемной трубе загрузчика, который подает его в распределительный загрузочный шнек. Шнек распределяет зерновой материал по ширине и подает его в воздушный канал I аспирации, где восходящий поток воздуха выносит в отстойную камеру легкие примеси (включая солому, колосья, головки сорняков и т. д.). 
Пройдя очистку в канале I аспирации, материал поступает на решето Б1 решетного стана, на котором вся зерновая смесь делится на две, примерно равные по весу, но различные по размерам зерен части (фракции). Каждая из этих частей обрабатывается на решетах отдельно. Фракцию с крупными семенами (сход с решета Б1), не имеющую мелких примесей и мелкого зерна, обрабатывает решето Б2 и выделяет из нее крупные примеси; фракцию с мелкими семенами  (проход через решето Б1), не имеющую крупных примесей, обрабатывает подсевное решето В и выделяет из нее мелкие примеси.

Рис. 1 Общий вид машины: 
1 – загрузочный транспортер с питателями; 2 – триерные цилиндры; 3 – элеватор; 4 – воздушноочистительная часть; 5 – решетный стан; 6 – рама; 7 – шнек чистого зерна; 8 – механизм передвижения. 

Проход через решето В (мелкие примеси) по желобу выводится в приемник 1. Сход с решета В попадает на сортировальное решето Г, выделяющее мелкое зерно и оставшиеся мелкие примеси (проход через решето Б2), которые по желобу направляются в приемник 2. 
Очищенный решетами материал (сход с решета Г) по течке поступает во вторую аспирацию, где восходящий поток воздуха выносит во вторую отстойную камеру оставшиеся легкие примеси и щуплое зерно. 
Далее зерновой материал шнеком чистого зерна подается в первую ветвь отгрузочного элеватора, который транспортирует зерно в триерный цилиндр коротких примесей. Короткие примеси перебрасываются в лоток, из которого шнеком выводятся наружу, подаются в решетный стан, где объединяются с проходом решета Г (фуражные отходы).

Рис. 2. Технологическая схема

1- легкие и мелкие примеси;  
2 - мелкие и короткие примеси;  
3 - крупные примеси и щуплое зерно;  
4 - длинные примеси;    
5 - очищенный материал;  
6 - воздушный поток;  
7-пыль

Очищенное от коротких примесей зерно самотеком направляется по течке в триерный цилиндр длинных примесей. Ячейки этого триера выбирают зерно и перебрасывают в желоб, откуда шнеком они подаются ко второй ветви отгрузочного элеватора, сходом идут длинные примеси в приемник 4. 
При очистке продовольственного зерна триеры отключают, переключают заслонку режима работы на элеваторе, и зерно выводится первой ветвью элеватора наружу, в приемник 5. 
При очистке вороха, основной материал которого имеет длину большую, чем остальные примеси, например, овес, сходом с овсюжного цилиндра пойдет основной материал, а лотком будут выводиться только короткие примеси. 
Для использования машины с большим экономическим эффектом и для обеспечения нормального технологического процесса необходимо, чтобы ширина очищаемого вороха не превышала 3200 мм. 
Формирование вороха указанного размера легко достигается разгрузкой машины по одной линии на всю его длину. 
Несоблюдение указанного требования (разгрузка в шахматном порядке или навалом в одно место) приводит к потребности в дополнительной рабочей силе, к нарушению технологий очистки, смешиванию очищенного материала, фуражных отходов и легких примесей уменьшению производительности машины, а все это резко снижает экономическую эффективность работы машины. 

Триеры. Машина имеет два триера: верхний — кукольный — для отделения коротких примесей и нижний — овсюжный — для отделения длинных примесей. 
Оба триера имеют аналогичное устройство. Каждый из них состоит из обечайки 3, розеток 5 и лотка 2 (рис. 3). 
Соединяется обечайка с розетками с помощью трех стяжек 4. Передними розетками цилиндры опираются на ролики. Задние розетки крепятся на валу через резиновые втулки, сжатые фланцами. Резиновые втулки передают крутящий момент цилиндру и фиксируют розетки на валу от осевого перемещения. Обечайки кукольного и овсюжного триеров отличаются диаметром ячеек, розетки — конструкцией. Передняя розетка овсюжного триера имеет кольцо-диафрагму, которая обеспечивает создание определенного слоя материала для сокращения потерь полноценного зерна в отходы. При обработке таких культур, как овес, диафрагма снимается. 
Лоток цилиндра находится внутри обечайки и опирается на вал триера через подшипники скольжения. Вал имеет шнековую навивку внутри лотка. Лоток заканчивается горловиной, через которую выводится материал, заброшенный ячейками обечайки в лоток. 
Триерные цилиндры установлены на раме горизонтально, поэтому осевое перемещение материала в цилиндре осуществляется с помощью плужков 7, закрепленных на стенке лотка. Поворот лотка осуществляется с помощью цилиндрической зубчатой пары (колесо 1 и шестерня) поворотом маховичка. Положение рабочей кромки лотка определяется визуально указателем, копирующим его форму, и фиксируется фрикционной парой, усиление которой регулируется торцевой гайкой.

Рис. 3. Триерный цилиндр: 
1 — зубчатое колесо, 2 — лоток, 3 — обечайка, 4 — стяжка, 5 — розетка, 6 — приводная звездочка, 7 — плужок.

 

 

 

 

 

 

 

6.Начертите  схему устройства и опишите  работу автоматизированной водоподъёмной  установки типа ВУ.

Характерным свойством систем управления, определяющим их как особый класс динамических систем, является использование текущей информации об управляемых и управляющих воздействиях при реализации обратных и компенсирующих связей, предназначенных для обеспечения оптимального качества управления по выбранному критерию.

Основы научного подхода к проектированию автоматических устройств были заложены еще в ХГХ в. русским ученым И. А. Вышнеградским, определившим, что машина и регулятор образуют единую динамическую систему. Им сформулированы также основные положения теории устойчивости и важнейшие закономерности регулирования по принципу обратной связи.

Повышение мощности, сложности и стоимости технологических комплексов и систем как объектов управления, ужесточение требований к качеству продукции, охране окружающей среды и безопасности персонала, а также обеспечение длительной работоспособности оборудования являются экономическими и социальными предпосылками к непрерывному совершенствованию систем управления.

В настоящее время достигнуты определенные успехи в создании автоматизированных (с участием человека) и полностью автоматических управляющих систем. Это способствовало бурному развитию микропроцессорных средств, способных выполнять весь комплекс функций по преобразованию, передаче, обработке, хранению и использованию информации для воздействия на технологический процесс и для связи с оператором. В первую очередь осуществляются измерение, контроль и регулирование состояния технологических объектов.

 
АВТОМАТИЗАЦИЯ ВОДОСНАБЖЕНИЯ

 
Водоснабжение городских потребителей хорошо механизировано и автоматизировано. Благодаря автоматизации человек практически освобожден от ручного труда при добыче, доставке и распределении воды на предприятия и в быту. Автоматизация позволила увеличить производительность труда по водоснабжению в 20 раз, снизить эксплуатационные затраты в 10 раз.

Для подъема и раздачи воды применяют водонасосные установки, состоящие из водоприемников, очистительных сооружений, резервуаров чистой воды или водонапорных башен, соединительной водопроводной сети и электронасосов со станциями управления. Наиболее широко в сельском хозяйстве распространены центробежные и осевые насосы. Насосы выполняют в моноблоке с электродвигателями и погружают в воду или располагают на поверхности земли.

Для подъема воды из открытых водоемов и шахтных колодцев используют также плавающие центробежные насосы. Широко распространены так называемые объемно-инерционные насосы с электромагнитным вибрационным приводом, рассчитанные на малую подачу воды (до 1 м3/ч при напоре 20 м).

В водоснабжении используют водонасосные установки трех типов: башенные с водонапорным баком, безбашенные с водонапорным котлом и непосредственной подачей воды в водопроводную сеть. Почти в 90 % случаев используют башенные водонасосные установки с расходом воды до 30 м3/ч. Если расход воды составляет 30...б5м3/ч, то рекомендуют двухагрегатные насосные станции с водонапорным котлом. При расходе воды более 65 м3/ч экономически целесообразно использовать насосные установки с непосредственной подачей воды в распределительную сеть.

Безбашенная автоматическая водоподъемная установка типа ВУ (рис. 1.1) предназначена для подъема воды из открытых водоемов и шахтных колодцев глубиной до 5 м при напоре 25...80 м. Установка состоит из всасывающей трубы 1 с приемным фильтром насосного агрегата 2, нагнетательной 3 и водоразборной 12 труб с запирающими вентилями 5, воздушно-водяного бака 4 с датчиком давления 8 и струйным регулятором запаса воздуха, имеющего камеру смешивания 6, воздушный клапан 7, жиклер 10 и диффузор 11.

 

Рис.1.1. Технологическая схема водоподъемной установки типа ВУ (а) и принципиальная электрическая схема управления ею (б):

1 – всасывающая труба; 2 – насосный агрегат; 3 – нагнетательная  труба; 4 – воздушно-водяной бак; 5 – запирающий вентиль; 6 – камера  смешивания; 7 – воздушный клапан; 8 – датчик давления; 9 – предохранительный  клапан; 10 – жиклер; 11 – диффузор; 12 – водозаборная труба

 

Схема управления в автоматическом режиме работает следующим образом. Вода к потребителю поступает под давлением воздушной подушки, расположенной над водой в котле. При разборе воды из котла давление в котле снижается и контакты манометрического датчика давления ВР замыкаются, катушка магнитного пускателя КМ получает питание и включает электронасос.

Давление включения, МПа, рассчитывают по формуле

P1 = (Hсв + Hр + Hпот )10-2

где Hсв — свободный напор у потребителя, м (для одноэтажных зданий 8 м, для двухэтажных — 12 м); Hр — разность отметок расчетных точек водопроводной сети и минимального уровня воды в баке, м; Hпот — потери напора в водопроводной сети, м.

При увеличении уровня воды давление в котле повышается до заданного значения, при котором контакты ВР размыкаются и насос отключается.

Давление выключения, МПа, определяют по формуле

P2 = 1,7 P1+ 0,7

Ручное управление электронасосом осуществляется кнопками SB2 «Пуск» и SB1 «Стоп».

Объем воздушной подушки в баке постоянно уменьшается, так как часть воздуха растворяется и выносится с водой. Вследствие этого уменьшается давление воздушной подушки и регулирующий объем в котле снижается.

Для автоматического поддержания объема воздушной подушки служит регулятор, обеспечивающий подкачку воздуха до давления в баке 250 кПа. При максимальных аварийных давлениях срабатывает предохранительный клапан 9. Пополнение воздуха происходит, когда жиклер 10 перекрыт водой. Струя воды под действием насоса создает разрежение в камере 6 (эффект пульверизации), воздушный клапан 7 открывается, и воздух, смешиваясь с водой, поступает в котел.

Безбашенные водоподъемные установки имеют низкий коэффициент использования объема бака (0,15...0,2)V, большой перепад давлений (20...30 м) при малом регулирующем объеме Vp и взрывоопасны. Поэтому их применяют ограничено.

Башенная система водоснабжения обычно работает по следующей схеме: водоисточник — насосный агрегат — напорный агрегат — напорный трубопровод — водонапорная башня — водопроводная сеть — потребители воды.

При включении насоса вода поступает одновременно к потребителям и в напорный бак башни. Количество поступающей в бак воды равно разности между подачей насоса и расходом потребителей. После наполнения 6av х насосный агрегат отключается и водоснабжение потребителей обеспечивается водой, запасенной в баке. Вместимость бака стандартных водонапорных башен-колонн 15...50 м3 и более. При этом общая вместимость бака определяется как сумма трех объемов: регулирующего, запасного и «мертвого». «Мертвый» объем, как правило, невелик. В него входят отстойная часть бака и часть объема бака от его верхней кромки до максимального уровня воды (высотой примерно 0,3 м).

Запасной объем должен хранить хозяйственно-производственный запас на случай перерыва в электроснабжении и, главное, пожарный запас воды, размеры которого определяются строительными нормами и правилами.

Регулирующий объем Vр (м3), подача насоса GH (м3/ч) и текущее потребление воды Gp (м3/ч) определяют продолжительность работы насосного агрегата

Tп=Vp/(Gн - Gp)

Продолжительность паузы

Tп=Vp/Gp.

Соответственно время цикла Тц = Тр+ Тп

Максимальное число включений будет при :

n = 0,25(Gн /Vp).

Наибольшее число включений в течение суток

nmax = 24n = 6(Gн /Vp).

По этой формуле определяют рабочий объем Vp, ограничивающий максимальное число включений насосного агрегата nmax:

n = 6 Gн / nmax

Рабочий объем бака при автоматическом управлении насосным агрегатом определяется расстоянием h между датчиками верхнего и нижнего уровней.

Таким образом, для того чтобы обеспечить число включений погружного насоса не более допустимого по техническим условиям, расстояние между датчиками верхнего и нижнего уровней (зона неоднозначности двухпозиционного регулятора) должно быть

n = 6 Gн / (nmax F)

где F— площадь зеркала воды в баке, м3.

Опыт эксплуатации погружных насосов свидетельствует о том, что nmax не должно превышать 50...70 (в зависимости от конструкции) с интервалом между включениями не менее 5 мин.

Информация о работе Контрольная работа по "Механизации"