Автор работы: Пользователь скрыл имя, 16 Января 2014 в 20:24, реферат
Химико-термической обработкой называют поверхностное насыщение стаи соответствующим элементом (например, углеродом, азотом, алюминием, хромом и др.) путем его диффузии в атомарном состоянии из внешней среды при высокой температуре.
Процесс химико-термической обработки включает три элементарные стадии: 1. Выделение диффундирующего элемента в атомарном состоянии благодаря реакциям, протекающим во внешней среде; 2. Контактирование атомов диффундирующего элемента с поверхностью стального изделия и проникновение (растворение) их в решетку железа (адсорбция); 3. Диффузия атомов насыщающего элемента в глубь металла.
Общая характеристика процессов химико-термической обработки стали. 2
Цементация 4
Азотирование 11
Нитроцементация 16
Цианирование 18
Борирование 19
Диффузионная металлизация (диффузионное насыщение металлами) 20
Список используемой литературы
Процесс цианирования по
сравнению с процессом
Недостатком цианирования
является высокая стоимость, ядовитость
цианистых солей и
VI Борирование.
Борированием называется химико-термическая обработка, заключающаяся в диффузионном насыщении поверхностного слоя стали бором при нагреве в соответствующей среде. Борирование чаще выполняют при электролизе расплавленной буры (Na₂B₄O₇). Изделие служит катодом. Температура насыщения 930 – 950 ˚С при выдержке 2 – 6 ч. Процесс можно вести и без электролиза в ваннах с расплавленными хлористыми солями (NaCl, BaCl₂), в которые добавляют 20% ферробора или 10% карбида бора (В₄С). Хорошие результаты получены при газовом борировании. В этом случае насыщение ведут при 850 – 900 ˚С в среде диборана (В₂Н₆) или треххлористого бора (BCl₃) в смеси с водородом.
Диффузионный слой состоит из боридов FeB (на поверхности) и Fe₂B (рис. 9, д). Толщина слоя 0,1 – 0,2 мм. Борированный слой обладает высокой твердостью (HV 1800 – 2000), износостойкостью (главным образом, абразивной), коррозионной стойкостью, окалиностойкостью (до 800 ₆˚С) и теплостойкостью.
Борирование применяют для повышения износостойкости втулок грязевых нефтяных насосов, дисков пяты турбобура, вытяжных, гибочных и формовочных штампов, деталей пресс-форм и машин для литья под давлением. Стойкость указанных деталей после борирования возрастает в 2 – 10 раз.
VII Диффузионная металлизация (диффузионное насыщение металлами).
Поверхностное насыщение стали алюминием, хромом, цинком и другими элементами называют диффузионным насыщением металлами. Изделие, поверхность которого обогащена этими элементами, приобретает ценные свойства, к числу которых относится высокая жаростойкость, коррозионная стойкость, повышенная износостойкость и твердость.
В зависимости от метода
переноса диффузионного элемента насыщаемую
поверхность различают
Галогенные соединения диффундирующего элемента получают путем воздействия галойдного или галойдоводородного газа на этот элемент или его ферросплав:
Э + nНГ ↔ ЭГn +
На границе раздела газовая фаза – обрабатываемая поверхность могут протекать следующие реакции: 1. Реакция обмена; ЭГn + Fe ↔ FeГn + Э; 2. ЭГn ↔ Э + Гn; 3. Реакция диспропорционирования: ЭГn ↔ Э + ЭГm, где Э – диффундирующий элемент; Г – соответствующий галоид (Cl, F, J, Br) и n и m – стехиометрические коэффициенты (целые числа).
Элемент Э, образующийся в результате реакций, адсорбируется обрабатываемой поверхностью и диффундирует в глубь обрабатываемого изделия. Наиболее часто применяют контактный метод насыщения из газовой фазы. Для этого обрабатываемое изделие упаковывают в порошкообразную среду, состоящую из ферросплава диффундирующего элемента (50 – 75%), Al₂O₃ или шамота и 0,5 – 5,0 NH₄Cl. При высокой температуре диссоциирует NH₄Cl → NH₃ + HCl. При этом полученный HCl взаимодействует с ферросплавом, образуя галоидные соединения диффундирующего элемента. Процесс ведут при 950 – 1150 ˚С в течении 3 – 12 ч.
В последние годы насыщение металлами (например, хромом) производится путем испарения диффундирующего элемента в вакууме. Ниже дана характеристика наиболее часто применяемых процессов диффузионной металлизации.
Алитирование.
Алитированием называют насыщение поверхности стали алюминием.
В результате аллитирования сталь приобретает высокую окалиностойкостью (до 850 – 900 ˚С), так как в процессе нагрева на поверхности аллитированных изделий образуется плотная пленка окиси алюминия Al₂O₃, предохраняющая металл от окисления. Алитированный слой обладает также хорошим сопротивлением коррозии в атмосфере и морской воде.
Структура алитированного слоя представляет собой твердый раствор алюминия в α-железе (рис. 9,а). концентрация алюминия в поверхностной части слоя составляет ≈30%. Толщина слоя 0,2 – 1,0 мм. Твердость алитированного слоя (на поверхности) до HV 500, износостойкость низкая. Алитированию подвергают топливники газогенераторных машин, чехлы термопар, детали разливочных ковшей, клапаны и другие детали, работающие при высоких температурах.
Хромирование.
Хромированием называют процесс насыщения поверхности стальных изделий хромом. Этот процесс обеспечивает повышенную устойчивость стали против газовой коррозии (окалиностойкость) – до 800 ˚С, высокую коррозионную стойкость в таких средах, как вода, морская вода и азотная кислота. Хромирование сталей, содержащих свыше 0,3 – 0,4% С, повышает также твердость и износостойкость.
Рис. 9. Микроструктура диффузионных слоев (х 250):
а – алитированный слой на железе (α-фаза); б – хромированный слой на железе (α-фаза); в - хромированный слой на стали, содержащей 0,45% С, состоящий из карбида (Fe, Cr)₇C₃; г – силицированный слой на стали, содержащей 0,4% С (α-фаза); д – борированный слой на стали, содержащей 0,8% С (FeB и Fe₂B).
Диффузионный слой, получаемый при хромировании технического железа, состоит из твердого раствора хрома в α-железе (см. рис. 9,д). Слой, получаемый при хромировании стали, содержащий углерод, состоит из хрома (Cr, Fe)₇C₃ или (Cr, Fe)₂₃C₆. На рис. 9, в показана структура хромированного слоя, полученного на стали 0,45% С. Слой состоит из (Cr, Fe)₇C₃. Под слоем карбидов находится переходный слой с высоким содержанием углерода (0,8%). Такие слои образуются в результате диффузии углерода из внутренних слоев к поверхности навстречу хрому. Углерод обладает большей скоростью диффузии, чем хром, поэтому для образования карбидного слоя используется не весь углерод, и под карбидным слоем находится переходный слой с высоким содержанием углерода. карбидный слой обладает высокой твердостью. Твердость слоя, полученного хромированием железа, составляет HV 250 – 300, а хромирование стали – HV 1200 – 1300.
Для деталей, работающих в агрессивных средах, хромированный слой должен состоять из α-фазы и иметь толщину 0,1 – 0,15 мм. Для деталей, работающих в условиях сильного износа и коррозии, рекомендуется карбидный слой глубиной 0,025 – 0,03 мм.
Хромированием используют для деталей паросилового оборудования, пароводяной арматуры, клапанов, вентилей, патрубков, а также деталей, работающих на износ в агрессивных средах.
Силицирование.
Насыщение поверхности стали кремнием называют силицированием. Силицирование придает стали высокую коррозионную стойкость морской воде, в азотной, серной и соляной кислотах и несколько увеличивает устойчивость против износа.
Силицированный слой (рис 9,г) является твердым раствором кремния в α-железе. Под диффузионным слоем часто наблюдается слой перлита. Это объясняется оттеснением углерода из диффузионного слоя в следствие пониженной растворимости его в кремнистом феррите. Силицированный слой отличается повышенной пористостью, толщина его 0,3 – 1,0 мм. Несмотря на низкую твердость (HV 200 – 300), силицированный слой обладает высокой износостойкостью после предварительной пропитки маслом при 170 – 200 ˚С.
Силицированию подвергают детали, используемые в оборудовании химической, бумажной и нефтяной промышленности (валики насосов, трубопроводы, арматура, гайки, боты и т.д.).
Список используемой литературы:
1 Добавляют для предотвращения спекания частиц карбюризатором
2 Для газовой цементации с применением природного газа или эндогаза часто применяют бузмуфельные печи СЩЦ с более высоко производительностью. При работе в шахтных печах наблюдаются значительные колебания концентрации углерода в слое (от 0,5 до 1,3%) и как следствие этого, механические свойства не стабильны. Кроме того, при использовании шахтных печей неизбежен контакт нагретых изделий с воздухом
3 Точка росы – температура, при которой начинается конденсация содержащихся в атмосфере водяных паров; измеряется специальным прибором. Точка росы регулируется изменением коэффициента избытка воздуха (α), подаваемого в генератор.
4 При 500 – 520 ˚С степень диссоциации аммиака составляет 15 – 25%, а при 600 – 650 ˚С возрастает до 40 – 50%.
5 Тенифер (Tenifer) – от начальных слогов трех латинских слов: tenax – твердый; nitrogenium – азот; ferrum – железо.
6 Суммарное содержание С и N характеризует качество слоя только при мартенситно-аустенитной структуре, не содержащей карбидной фазы.
Информация о работе Общая характеристика процессов химико-термической обработки стали