Автор работы: Пользователь скрыл имя, 24 Декабря 2013 в 23:01, курсовая работа
Увидеть трехмерную структуру микромира удалось только тогда, когда на смену оптическому лучу пришла тончайшая игла. Вначале принцип механического сканирования с помощью микрозонда нашел применение в сканирующей туннельной микроскопии, а затем на этой основе был разработан более универсальный метод атомно-силовой микроскопии.
Оба метода активно используются в исследовании структуры поверхности материала.
1.Введение………………………………………………………………….……3
2.Электронная микроскопия ………………………………………….……..4
Принцип действия электронных микроскопов…………………..……..4
Растровая электронная микроскопия…………………………….……7
3.Атомно – силовая микроскопия……………………………….......….…..13
Атомно-силовой микроскоп……………………………………….……13
Способы сканирования……………………………………………….…15
Преимущества и недостатки сканирующей зондовой микроскопии по отношению к другим методам диагностики поверхности……..……..16
Режимы сканирования……………………………………………..……19
Применение АСМ…………………………………………………..……21
4.Литература………………………………………………………………..….24
И вот когда авторы получили
атомное изображение давно
Сканирующая зондовая микроскопия — это метод исследования поверхности, основанный на взаимодействии микрозонда (кантилевера в случае АСМ) с поверхностью образца. Микрозонд или кантилевер (англ. — балка) представляет собой кремниевую пластинку (3х1.5х0.3 мм) с торчащей из торца балкой (как прямоугольной, так и треугольной формы), — на конце балки находится шип, конец которого и зондирует поверхность.
Атомно-силовой микроскоп.
Одной из наиболее распространенных разновидностей «сканирующей зондовой микроскопии», является атомно-силовая микроскопия (Рис. 11).
Первый микроскоп такого типа был сконструирован Г. Биннигом, Х. Гербером и С. Квайтом в 1986 году, после того как годом ранее Г. Бинниг показ принципиальную возможность неразрушающего контакта зонда с поверхностью образца.
Кантилеверы разделяются на жёсткие и мягкие, — по длине балки, а характеризуется это резонансной частотой колебаний кантилевера. Процесс сканирования микрозондом поверхности может происходить как в атмосфере или заранее заданном газе, так и в вакууме, и даже сквозь плёнку жидкости. СЗМ измеряет как нормальное к поверхности отклонение зонда (субангстремное разрешение) так и латеральное — одновременно. Для детектирования отклонения используется полупроводниковый лазер с длинной волны 670 нм и оптической мощностью 0,9 мВт. Лазерный луч направляется на обратную к по отношению к поверхности сторону кантилевера (на самый кончик), которая покрыта специальным алюминиевым зеркальным слоем для наилучшего отражения, и отраженный луч попадает в специальный четырёхсекционный фотодиод. Таким образом, отклонения кантилевера приводят к смещению луча лазера относительно секций фотодиода, — изменение разностного сигнала с фотодиода и будет показывать амплитуду смещения кантилевера в ту или иную сторону. Такая система позволяет измерять отклонения лазера в угле 0,1", что соответствует отклонению кантилевера на угол 2•10–7 рад[2,5].
Способы сканирования.
Сканирование поверхности может происходить двумя способами, — сканирование кантилевером и сканировение подложкой. Если в первом случае движения вдоль исследуемой поверхности совершает кантилевер, то во втором относительно неподвижного кантилевера движется сама подложка. Для сохранения режима сканирования, — кантилевер должен находиться вблизи поверхности, — в зависимости от режима, — будь то режим постоянной силы, или постоянной высоты, существует система, которая могла бы сохранять такой режим во время процесса сканирования. Для этого в электронную схему микроскопа входит специальная система обратной связи, которая связана с системой отклонения кантилевера от первоначального положения. Уровень связи (рабочая точка) кантилевер—подложка задается заранее, и система обратной связи отрабатывает так, чтобы этот уровень поддерживался постоянным независимо от рельефа поверхности, а сигнал, характеризующий величину отработки и является полезным сигналом детектирования.
Образец (поверхность) и кантилевер сближаются с помощью шагового двигателя до тех пор пока поверхность и кантилевер не начнут взаимодействовать, что приведёт к такому смещению лазерного луча на секциях фотодиода,а значит к такому разностному току, что обратная связь прекратит сближение.
Кантилевер непосредственно связан с четырёхобкладочной пьезотрубкой, подавая напряжение на противоположные обкладки, можно соответственно менять изгиб трубки, а значит и область сканирования кантилевера (горизонтальтное отклонение пьезотрубки) вдоль соответственно оси абсцисс и оси ординат. Внутри трубки находиться также пьезоэлемент, который отвечает за смещение кантилевера вдоль нормали к поверхности, то есть оси аппликат. При сканировании поверхности задается рабочая точка, физический смысл которой есть величина выдвижения пьезотрубки по отношению в максимальной амплитуде (обычно около 50 %). Обратная связь отрабатывает величину выдвижения пьезотрубки для поддержания режима (постоянной силы или постоянной высоты, в случае СТМ — постоянного туннельного тока) сканирования. В случае сканирования подложкой такая система присоединена к подложке.
Преимущества и недостатки сканирующей зондовой микроскопии по отношению к другим методам диагностики поверхности.
Перемещаясь
в плоскости образца над
Рис.12
Помимо непосредственного исследования структуры поверхности методом контактной АСМ, можно регистрировать силы трения и адгезионные силы. В настоящее время разработаны многопроходные методики, при которых регистрируется не только топография, но и электростатическое или магнитное взаимодействие зонда с образцом. С помощью этих методик удается определять магнитную и электронную структуру поверхности, строить распределения поверхностного потенциала и электрической емкости, и т.д. Для этого используют специальные «кантилеверы» с магнитными или проводящими покрытиями. АСМ также применяются для модификации поверхности. Используя жесткие зонды, можно делать гравировку и проводить «наночеканку» – выдавливать на поверхности крошечные рисунки. Применение жидкостной атомно-силовой микроскопии позволяет локально проводить электрохимические реакции, прикладывая потенциал между зондом и проводящей поверхностью , а также открывает возможность применения АСМ для исследования биологических объектов.
Рис. 13.
Необходимо было решить множество технических проблем: как избежать механических вибраций, приводящих к столкновению острия с поверхностью (мягкая подвеска), какие силы действуют между образцом и остриём (к созданию АСМ), как перемещать остриё с такой высокой точностью (пьезоэлектрик), как приводить образец и остриё в контакт (специальный держатель), как избежать тепловых флуктуаций (использование не нитевидных кристаллов с большими упругими константами, низкие темепературы), форма острия и её получение (на поверхности основного острия существуют миниострия — сначала использовались они, потом с помощью самого процесса туннелирования — сильное вакуумное электрическое поле при напряжении всего лишь несколько вольт вызвало миграцию ионов (испарение).
Принципиальным свойством электронной, оптической, ядерной микроскопий является, то что каждая частица, провзаимодействовавшая с образцом, будь то атом или субатомные объекты, является зондом. Однако, у данного метода есть свои минусы и плюсы. Так квантовый принцип неопределённости, гласящий, что определение одновременно импульса и координаты объекта исследования, возможно только с определённой точностью, заставляет увеличивать импульс регистрирующих частиц (энергию), что связано с созданием специальных технологий. Увеличение импульса регистрирующих частиц (например, электроны в ПЭМ достигают энергий до 1000 КэВ) создаёт проблемы с устойчивостью объекта к разрушению. Однако плюсом является тот факт, что одновременно получается информация сразу с относительно большого участка поверхности, что позволяет использовать данный метод для in-situ исследований. Так же главным недостатком данного вида микроскопии можно назвать условие относительного вакуума, для получения более менее качественного изображения.
Атомно-силовая микроскопия позволяет обрабатывать образцы в атмосфере, однако, главным её недостатком является отсутствие одновременной информации о всей поверхности, — в каждый момент времени мы имеем информацию только от участка непосредственно регистрируюемого зондом. Это не позволяет использовать in-situ методику. Атомно-силовая микроскопия позволяет получать информацию о поверхностном заряде, о поверхностной емкости, о поверхностной проводимости, о магнитных свойствах. Позволяет измерять эти параметры даже сквозь плёнку жидкости.
Режимы сканирования.
Существуют контактный, безконтактный и полуконтактный или резонансный режимы сканирования поверхности. Контактный метод заключается в том, что кантилевер непосредственно касается поверхности и повторяет её форму по мере прохождения поверхности.
Бесконтактный и полуконтактный режим характеризуются дополнительным условием сканирования, которое позволяет осуществить более щадящее и более тонкое сканирование поверхности. Кантилевер жестко связывается с отдельным пъезоэлементом и колеблется со своей резонансной частотой. При взаимодействии с поверхностью сбивается фаза, и специальный синхронный детектор старается выровнять частоту с помощью сигнала обратной связи. Таким образом, теперь детектируется кроме отклонения амплитудного также отклонение фазовое. В этом режиме кантилевер как бы постукивает по поверхности.
Основные моды работы:
1.Контактная мода.
Топография. F=const.
Измерение сил. Z=const.
Измерение сил трения.
Измерение локальной жесткости (модуляционная методика).
Измерение сопротивления растекания.
Резонансная мода.
Топография.
Фазовый контраст.
Магнито-силовая микроскопия.
Электристатическо-силовая микроскопия.
2.Бесконтактная мода.
Литография.
Механическая.
Электрическая.
Применение АСМ.
Специалисты из Massachusetts Institute of Technology и Stanford University предложили терабитную плотность записи для ЗУ с помощью АСМ технологии при комнатной температуре и на воздухе (локальное окисление на поверхности титана). Специалисты лаборатории Lindsay Florida Institute of Technology активно исследуют ДНК и РНК с помощью метода АСМ. Специалисты Institute of Applied Physics and Microstructure Research Center, University of Hamburg исследуют плёнки фуллеренов С60 на различных поверхностях.
В Laboratory of Applied Physics, Linkoping University (Швеция) изучается взаимодействие в полиэлектролитах.
Таким образом, очень разнообразная
тематика может быть затронута в
исследованиях с помощью метода
сканирующей силовой
Одной из наиболее распространенных разновидностей «сканирующей зондовой микроскопии», является атомно-силовая микроскопия (Рис. 1). Первый микроскоп такого типа был сконструирован Г. Биннигом, Х. Гербером и С. Квайтом в 1986 году, после того как годом ранее Г. Бинниг показ принципиальную возможность неразрушающего контакта зонда с поверхностью образца.
Действительно, если подвести зонд к образцу на расстояние в несколько ангстрем, то между атомами, образующими острие, и атомами, расположенными на поверхности образца, начнет действовать Ван-дер-Ваальсова сила притяжения. Под действием этой силы зонд будет приближаться к образцу до тех пор, пока не начнется электростатическое отталкивание одноименно (отрицательно) заряженных электронных оболочек атомов зонда и поверхности.
В первых атомно-силовых микроскопах зонд (иголку кристаллического сапфира) закрепляли на тонкой платиновой фольге, за перемещением которой следили по изменению туннельного тока, по аналогии со сканирующей туннельной микроскопией. В настоящее время зонд закрепляют на гибкой балке, называемой «кантилевером» или консолью. При подводе зонда к образцу на расстояние в несколько ангстрем и возникновении отталкивающего взаимодействия «кантилевер» изгибается до тех пор, пока давление со стороны зонда (определяемое силой упругости консоли) не окажется больше предела упругой деформации материала образца или зонда. Таким образом, основным свойством «кантилевера» является его жесткость, а подбор материала и геометрических характеристик «кантилевера» позволяет использовать метод АСМ для самых различных приложений.
Перемещаясь в плоскости образца над поверхностью, «кантилевер» изгибается, отслеживая ее рельеф. Однако при сканировании образца в контактном режиме поверхность образца частично повреждается, а разрешение метода оказывается достаточно низким. Разработка методов полуконтактного и бесконтактного сканирования, когда, зонд входит в контакт с поверхностью только в нижней точке траектории собственных резонансных колебаний или не входит в контакт вообще, позволили увеличить разрешение АСМ, значительно снизив давление на образец со стороны зонда. Для регистрации отклонения «кантилевера» предложены различные системы, основанные на использовании емкостных датчиков, интерферометров, систем отклонения светового луча или пьезоэлектрических датчиков. В современных приборах угол изгиба «кантилевера» регистрируется с помощью лазера, луч которого отражается от внешней стороны консоли и падает на фотодиодный секторный датчик (Рис. 1). Система обратной связи отслеживает изменение сигнала на фотодетекторе и управляет «системой нанопозицонирования». Использование «пьезодвигателей» и атомно-острых зондов позволяет добиться атомного разрешения АСМ в высоком вакууме.
Информация о работе Электронно-микроскопические методы исследования материалов