Ценности и цели менеджера

Автор работы: Пользователь скрыл имя, 07 Июня 2012 в 13:33, курсовая работа

Краткое описание

Менеджером можно назвать человека только тогда , когда он принимает организационные решения или реализует их через других людей. Принятие решений , как и обмен информацией,- составная часть любой управленческой функции. Необходимость принятия решения пронизывает все , что делает управляющий, формулируя цели и добиваясь их достижения . поэтому понимание природы принятия решений чрезвычайно важно для всякого , кто хочет преуспеть в искусстве управления.

Содержание

Введение
1. Основные виды решений и подходы к их принятию.
2. Этапы принятия решения проблемы и их содержание.
3. Постановка конкретной проблемы торгового предприятия и разработка путей ее решения.
Заключение
Литература

Прикрепленные файлы: 1 файл

Сущность и роль управленческих решений.doc

— 165.00 Кб (Скачать документ)

 Способ фиксации решения.

По этому признаку управленческие решения могут быть разделены на фиксированные, или документальные  (т.е. оформленные в виде какого либо документа  - приказа, распоряжения, письма и т.п. ) , и недокументированные ( не имеющие документальной формы, устные ). Большинство решений в аппарате управления оформляется документально, однако мелкие, несущественные решения, а также решения , принятые в чрезвычайных, острых, не терпящих промедления ситуациях, могут и не фиксироваться документально.        

    Характер использованной информации. В зависимости от степени полноты и достоверности информации, которой располагает менеджер, управленческие решения могут быть детерминированными (принятыми в условиях определённости) или вероятностными (принятыми в условиях риска или неопределённости). Эти условия играют чрезвычайно важную роль при принятии решений, поэтому рассмотрим их более подробно.

Детерминированные и вероятностные решения.

Детерминированные решения  принимаются в условиях определённости, когда руководитель располагает практически полной и достоверной информацией в отношении решаемой проблемы, что позволяет ему точно знать результат каждого из альтернативных вариантов выбора. Такой результат только один, и вероятность его наступления близка к единице. Примером детерминированного решения может быть выбор в качестве инструмента инвестирования свободной наличности 20 % - ных облигаций федерального займа с постоянным купонным доходом. Финансовый менеджер в этом случае точно знает, что за исключением крайне маловероятных чрезвычайных обстоятельств, из-за которых правительство РФ не сможет выполнить свои обязательства , организация получит ровно 20 % годовых на вложенные средства. Подобным образом, принимая решение о запуске в производство определённого изделия, руководитель может точно определить уровень издержек производства, так как ставки арендной платы, стоимость материалов и рабочей силы могут быть рассчитаны довольно точно.

       Анализ управленческих решений  в условиях определенности это самый простой случай : известно количество возможных ситуаций (вариантов) и их исходы . Нужно выбрать один из возможных вариантов . Степень сложности процедуры выбора в данном случае определяется лишь количеством альтернативных вариантов . Рассмотрим две возможные ситуации :

     а) Имеется два возможных варианта ;

         n=2

В данном случае аналитик должен выбрать (или рекомендовать к выбору) один из двух возможных вариантов . Последовательность действий здесь следующая :

   определяется критерий по которому будет делаться выбор ;

   методом “ прямого счета ”  исчисляются значения критерия для сравниваемых вариантов ;

   вариант с лучшим значением критерия рекомендуется к отбору.

Возможны различные методы решения этой задачи. Как правило они подразделяются на две группы :

методы основанные на дисконтированных оценках;

методы, основанные на учетных оценках .

Первая группа методов основывается на следующей идее. Денежные доходы , поступающие на предприятие в различные моменты времени , не должны суммироваться непосредственно ; можно суммировать лишь элементы приведенного потока . Если обозначить F1,F2 ,....,Fn прогнозируемый коэффициент дисконтирования денежного потока по годам , то i-й элемент приведенного денежного потока Рi рассчитывается по формуле :

Pi = Fi / ( 1+ r ) i

где r- коэффициент дисконтирования.

Назначение коэффициента дисконтирования состоит во временной упорядоченности будущих денежных поступлений ( доходов ) и приведении их к текущему моменту времени. Экономический смысл этого представления в следующем : значимость прогнозируемой величины денежных поступлений через i лет ( Fi ) с позиции текущего момента будет меньше или равна Pi . Это означает так же , что для инвестора сумма Pi в данный момент времени и сумма Fi через i лет одинаковы по своей ценности . Используя эту формулу , можно приводить в сопоставимый вид оценку будущих доходов , ожидаемых к поступлению в течении ряда лет . В этом случае коэффициент дисконтирования численно равен процентной ставке , устанавливаемой инвестором , т.е. тому относительному размеру дохода , который инвестор хочет или может получить на инвестируемый им капитал .

Итак последовательность действий аналитика такова ( расчеты выполняются для каждого альтернативного варианта ) :

*                        рассчитывается величина требуемых инвестиций (экспертная оценка ) , IC ;

*                        оценивается прибыль (денежные поступления ) по годам Fi ;

*                        устанавливается значение коэффициента   

            дисконтирования , r;

*                        определяются элементы приведенного потока , Pi;

*                        рассчитывается чистый приведенный эффект (NPV) по 

            формуле:

NPV= E Pi - IC

   сравниваются значения NPV;

   предпочтение отдается тому варианту, который имеет больший                      NPV (отрицательное значение NPV свидетельствует об экономической нецелесообразности данного варианта ).

Вторая группа методов продолжает использование в расчетах прогнозных значений  F . Один из самых простых методов этой группы - расчет срока окупаемости инвестиции. Последовательность действий аналитика в этом случае такова:

*          рассчитывается величина требуемых инвестиций , IC;

*          оценивается прибыль (денежные поступления) по годам , Fi ;

*          выбирается тот вариант, кумулятивная прибыль по которому за  меньшее число лет окупит сделанные инвестиции.

б) Число альтернативных вариантов больше двух.

     n > 2

Процедурная сторона анализа существенно усложняется из-за множественности вариантов, техника “ прямого счета “ в этом случае практически не применима. Наиболее удобный вычислительный аппарат - методы оптимального программирования ( в данном случае этот термин означает “ планирование ” ) . Этих методов много ( линейное , нелинейное, динамическое и пр. ), но на практике в экономических исследованиях относительную известность получило лишь линейное программирование. В частности рассмотрим транспортную задачу как пример выбора оптимального варианта из набора альтернативных . Суть задачи состоит в следующем .

Имеется n пунктов производства некоторой продукции ( а1,а2,...,аn ) и k пунктов ее потребления ( b1,b2,....,bk ), где ai - объем выпуска продукции i - го пункта производства , bj - объем потребления j - го пункта потребления. Рассматривается наиболее простая , так называемая “закрытая задача ” , когда суммарные объемы производства и потребления равны . Пусть cij - затраты на перевозку единицы продукции . Требуется найти наиболее рациональную схему прикрепления поставщиков к потребителям , минимизирующую суммарные затраты по транспортировке продукции . Очевидно , что число альтернативных вариантов здесь может быть очень большим , что исключает применение метода “ прямого счета ” . Итак необходимо решить следующую задачу :

E E Cg Xg -> min

E Xg = bj         E Xg = bj      Xg >= 0

 

Известны различные способы решения этой задачи -распределительный метод потенциалов и др . Как правило для расчетов применяется ЭВМ .

При проведении анализа в условиях определенности могут успешно применяться методы машинной имитации , предполагающие множественные расчеты на ЭВМ . В этом случае строится имитационная модель объекта или процесса ( компьютерная программа ) , содержащая b-е число факторов и переменных , значения которых в разных комбинациях подвергается варьированию . Таким образом машинная имитация - это эксперимент , но не в реальных , а в искусственных условиях . По результатам этого эксперимента отбирается один или несколько вариантов , являющихся базовыми для принятия окончательного решения на основе дополнительных  формальных и неформальных критериев . 

Однако лишь немногие решения принимаются в условиях определённости. Большинство управленческих решений являются вероятностными.

Вероятностными называются решения, принимаемые в условиях риска или неопределённости.

К решениям принимаемых в условиях риска, относят такие, результаты которых не являются определёнными, но вероятность каждого результата известна. Вероятность определяется как степень возможности свершения данного события и изменяется от 0 до 1. Сумма вероятностей всех альтернатив должна быть равна единице. Вероятность можно определить математическими методами на основе статистического анализа опытных данных. Например, компании по страхованию жизни на основе анализа демографических данных могут с высокой степенью точности прогнозировать уровень смертности в определённых возрастных категориях и на этой базе определять страховые тарифы и объем страховых взносов, позволяющих выплачивать страховые премии и получать прибыль. Такая вероятность, рассчитанная на основе информации, позволяющей сделать статистически достоверный прогноз, называется объективной.

В ряде случаев, однако, организация не располагает достаточной информацией для объективной оценки вероятности возможных событий. В таких ситуациях руководителям помогает опыт, который показывает , что именно может произойти с наибольшей вероятностью. В этих случаях оценка вероятности является субъективной.

Пример решения, принятого в условиях риска,- решение транспортной компании застраховать свой парк автомобилей. Менеджер не знает точно, будут ли аварии и сколько и какой ущерб они причинят, но из статистики транспортных происшествий он знает, что одна из десяти машин раз в году попадает в аварию и средний ущерб составляет $ 1 000 (цифры условные). Если организация имеет 100 автомашин, то за год вероятны 10 аварий с общим ущербом $ 10 000. В действительности же аварий может быть меньше, но ущерб больше, или наоборот. Исходя из этого и принимается решение о целесообразности страхования транспортных средств и размере страховой суммы.

Анализ и принятие решений в условиях риска встречается на практике наиболее часто. Здесь пользуются вероятностным подходом , предполагающим прогнозирование возможных исходов и присвоение им вероятностей . При этом пользуются:

а) известными, типовыми ситуациями (типа - вероятность появления герба при бросании монеты равна 0.5) ;

б) предыдущими распределениями вероятностей (например, из выборочных обследований или статистики предшествующих периодов известна вероятность появления бракованной детали ) ;

в) субъективными оценками, сделанными аналитиком самостоятельно либо с привлечением группы экспертов.

Последовательность действий аналитика в этом случае такова:

                      прогнозируются возможные исходы Ak , k = 1 ,2 ,....., n ;

                      каждому исходу присваивается соответствующая вероятность pk , причем

Е рк = 1

                      выбирается критерий (например, максимизация математического ожидания прибыли);

                      выбирается вариант, удовлетворяющий выбранному критерию .

Пример: имеются два объекта инвестирования с одинаковой прогнозной суммой требуемых капитальных вложений. Величина планируемого дохода в каждом случае не определенна и приведена в виде распределения вероятностей :

         Проект А

Проект В

Прибыль

Вероятность

Прибыль

Вероятность

3000

0. 10

2000

0 . 10

3500

0 . 20

3000

0 . 20

4000

0 . 40

4000

0 . 35

4500

0 . 20

5000

0 . 25

5000

0 . 10

8000

0 . 10

Информация о работе Ценности и цели менеджера