Лекции по "Гигиене питания и химии пищи"

Автор работы: Пользователь скрыл имя, 14 Мая 2014 в 23:52, курс лекций

Краткое описание

Продукты питания должны удовлетворять потребности человека в пищевых веществах и энергии, а также выполнять профилактические и лечебные функции. На решение этих задач направлена концепция государственной политики в области здорового питания населения нашей республики. Работа в данной области предусматривает использование специальной терминологии, установленной экспертами Международной организации по стандартизации – ISO (ИСО).

Прикрепленные файлы: 1 файл

лекции по химии пищи.docx

— 237.21 Кб (Скачать документ)

Все усваиваемые углеводы расщепляются в желудочно-кишечном тракте до моносахаридов, а моносахариды далее всасываются из кишечника в кровь.

Неусваиваемые углеводы человеческим организмом не утилизируются, но они чрезвычайно важны для пищеварения и составляют так называемые пищевые волокна. Пищевые волокна выполняют следующие функции в организме человека:

  • стимулируют моторную функцию кишечника;

  • препятствуют всасыванию холестерина;

  • играют положительную роль в нормализации состава микрофлоры кишечника, в ингибировании гнилостных процессов;

  • оказывают влияние на липидный обмен, нарушение которого приводит к ожирению;

  • адсорбируют желчные кислоты.

В настоящее время можно считать доказанным, что необходимо увеличивать в рационе пищевые волокна. Источником их являются ржаные и пшеничные отруби, овощи, фрукты. Суточная норма пищевых волокон составляет 20–25 г.

 

 

3 Функции  моносахаридов и олигосахаридов  в пищевых продуктах.

Как и для белков у углеводов главной функциональной особенностью является гидрофильность. Гидрофильность углеовдов обусловлена наличием многочисленных ОН-групп, которые взаимодействуют с молекулами воды, что приводит к растворению углеводов.

Эффект связывания воды в значительной степени зависит от структуры углевода. Так, например, фруктоза значительно более гигроскопична, чем глюкоза, хотя они имеют и одинаковое число гидроксильных групп. А сахароза гораздо более гигроскопична чем лактоза или мальтоза. Различная водосвязывающая способность углеводов позволяет их целенаправленно использовать в различных технологиях.

Например, замороженные пекарские изделия не должны содержать больших количеств абсорбированной влаги, поэтому в этих изделиях целесообразно использовать лактозу или мальтозу. В других случаях, когда нежелательна потеря влаги в продуктах при хранении желательно использовать гигроскопичные сахара, например, фруктозные сиропы.

Углеводы могут связывать летучие ароматические вещества и способствуют сохранению цвета продуктов, что особенно важно в процессах сушки. Способность к связыванию ароматических веществ у олигосахаридов (циклодекстрины, гуммиарабик) выражена в большей степени, чем у моносахаридов.

Под действием высоких температур углеводы в пищевых продуктах участвуют в реакциях образования коричневых веществ – это реакции карамелизации и меланоидинообразования. При этом образуются и ароматические вещества, имитирующие карамельный аромат, аромат ржаного хлеба, шоколада, запах картофеля или жареного мяса. Протекание подобных реакций необходимо учитывать, так как они могут быть и нежелательными.

Важной функцией низкомолекулярных углеводов в пищевых продуктах является их сладость. Если принять сладость сахарозы за 100ед., то сладость глюкозы составит 74ед., фруктозы – 180ед., лактозы – 32ед., а у заменителей сахара аспартам – 180ед, сахарин – 500ед.

 

 

4 Функции полисахаридов в пищевых  продуктах.

Все полисахариды, присутствующие в пищевых продуктах, выполняют ту или иную полезную роль, связанную с их молекулярной архитектурой, размером и наличием межмолекулярных взаимодействий, в первую очередь, водородных. Неусваиваемые полисахариды целлюлоза, гемицеллюлоза и пектиновые компоненты клеточных стенок овощей, фруктов и семян придают многим продуктам твердость, хрупкость, плотность, обеспечивают загустевание, вязкость, липкость, гелеобразование, ощущения во рту.

В принципе, полисахариды должны быть растворимы, поскольку они состоят из гликозидных единиц (гексоз или пентоз), содержащих несколько точек для образования водородных связей с молекулами воды, что и определяет растворимость. Однако отдельные молекулы полисахаридов соединяются водородными связями друг с другом и образуют устойчивые нерастворимые кристаллические структуры. В первую очередь это относится к целлюлозе.

Подобные свойства могут проявляться и в растворах полисахаридов, когда отдельные молекулы соединяются между собой с образованием седиментационно неустойчивых частиц. Примером тому является кристаллизация (ретроградация) молекул крахмала. При этом процесс вытеснения воды из молекул крахмала называется синерезисом.

Однако когда молекулы полисахарида связываются между собой не плотно, а только по отдельным зонам, то они образуют трёхмерную сетку с растворителем – гель.

В случае, когда сетка геля содержит малое количество соединительных зон, такой гель называют слабым. Он легко разрушается под внешним давлением или при небольшом увеличении температуры. Если в сетке геля количество соединительных зон велико, то такие гели (твёрдые) могут противостоять внешнему давлению, а также они термоустойчивы.

В растворах разветвлённых полисахаридов, а также заряженных полисахаридов (содержат электролитические группы СООН) количество соединительных зон между молекулами слишком мало, поэтому такие растворы не превращаются в гели, а лишь обладают повышенной вязкостью. При этом вязкость раствора пропорциональна размеру молекулы и её заряду: линейные и заряженные полисахариды образуют более вязкие растворы.

Крахмал является важным компонентом пищевых продуктов, исполняя роль загустителя и связывающего агента. Крахмалы являются хорошими загустителями и в горячей воде образуют вязкие клестеры. Однако при хранении и замораживании крахмалосодержащих продуктов возможна ретроградация, что приводит к появлению волокнистой структуры продукта и его черствению.

Модифицированные крахмалы получают из природного крахмала, они обладают улучшенными функциональными свойствами и образуют более устойчивые клейстеры и гели.

Целлюлоза нерастворима в воде. В пищевых продуктах используют гидролизаты целлюлозы (микрокристаллическую целлюлозу) в начинках, пудингах, мягких сырах, фруктовых желе, пекарских изделиях, мороженом и различных замороженных десертах.

Гемицеллюлозы – класс структурных полисахаридов, растительного происхождения. Они хорошо связывают воду и, тем самым, способствуют улучшению качества теста, а также препятствуют черствению готовых хлебобулочных изделий.

Пектин – класс структурных полисахаридов, растительного происхождения. Они хорошо связывают воду и обладают хорошей желирующей и гелеобразующей способностью, поэтому широко используется в производстве кондитерских изделий, фруктовых желе, джемов.

 

 

 

Лекция №5

Тема: Физиологическое значение липидов в питании человека.

1 Строение и состав липидов.

2 Пищевая ценность масел и жиров.

 

1 Строение  и состав липидов

Липидами (от греч. lipos – эфир) называют сложную смесь эфироподобных органических соединений с близкими физико-химическими свойствами. Липиды широко используются при получении многих продуктов питания, являются важными компонентами пищевых продуктов, во многом определяя их пищевую и биологическую полноценность и вкусовые качества.

В растениях липиды накапливаются, главным образом, в семенах и плодах и варьируется от нескольких процентов в злаковых и крупяных культурах до десятков процентов в масличных культурах. У животных и рыб липиды концентрируются в подкожных, мозговой и нервной тканях. Содержание липидов в рыбе варьируется от 8 до 25%, у туш наземных животных оно сильно колеблется: 33% (свинина), 9,8% (говядина). В молоке различных видов животных содержание липидов колеблется от 1,7% в кобыльем молоке до 34,5% в молоке самки северного оленя.

Липиды не растворимы в воде (гидрофобны*), хорошо растворимы в органических растворителях (бензине, диэтиловом эфире, хлороформе и др.).

По химическому строению липиды являются производными жирных кислот, спиртов, альдегидов, построенных с помощью сложноэфирной, простой эфирной, фосфоэфирной, гликозидной связей. Липиды делят на две основные группы: простые и сложные липиды. К простым нейтральным липидам относят производные высших жирных кислот и спиртов: глицеролипиды, воски, эфиры холестерин, гликолипиды и другие соединения. Молекулы сложных липидов содержат в своем составе не только остатки высокомолекулярных карбоновых кислот, но и фосфорную, серную кислоты или азот.

Наиболее важная и распространенная группа простых нейтральных липидов – ацилглицерины (или глицериды). Это сложные эфиры глицерина и высших карбоновых кислот. Они составляют основную массу липидов (иногда до 95%) и, по существу, именно их называют жирами или маслами. В состав жиров входят, главным образом, триацилглицерины (I), реже диацилглицерины (II) и моноацилглицерины (III):

Важнейшими представителями сложных липидов являются фосфолипиды – обязательные компоненты растений (0,3-1,7%). Их молекулы построены из остатков спиртов (глицерина, сфингозина), жирных кислот, фосфорной кислоты (Н3РО4), а также содержат азотистые основания, остатки аминокислот и некоторых других соединений.

Молекулы большинства фосфолипидов построены по общему принципу. В их состав входят, с одной стороны, гидрофобные, отличающиеся низким сродством к воде, с другой – гидрофильные группы (остатки фосфорной кислоты и азотистого основания). Они получили название «полярных головок». Благодаря этому свойству (амфифильность) фосфолипиды часто создают границу раздела (мембрану) между водой и гидрофобной фазой в системах живых организмов и пищевых продуктах.

Липиды выполняют не только энергетическую функцию (свободные липиды), но и выполняют структурную функцию: вместе с белками и углеводами входят в состав мембран клеток и клеточных структур. По массе структурные липиды составляют значительно меньшую группу липидов (в масличных семенах 3-5%). Это трудноизвлекаемые «связанные» и «прочносвязанные» липиды.

 

 

2 Пищевая ценность масел и жиров.

Растительные жиры и масла являются обязательным компонентом пищи, источником энергетического и пластического материала для человека, поставщиком ряда необходимых для него веществ (непредельных жирных кислот, фосфолипидов, жирорастворимых витаминов, стеринов), то есть они являются незаменимыми факторами питания, определяющими его биологическую эффективность. Рекомендуемое содержание жира в рационе человека (по калорийности) составляет 30–33%.

Наиболее важные источники жиров в питании – растительные масла (в рафинированных маслах 99,7-99,8% жира), сливочное масло (61,5-82,5% липидов), маргарин (до 82,0% жира), комбинированные жиры (50-72% жира), кулинарные жиры (99% жира), молочные продукты (3,5–30% жира), некоторые виды кондитерских изделий – шоколад (35– 40%), отдельные сорта конфет (до 35%), печенье (10-11%); крупы – гречневая (3,3%), овсяная (6,1%); продукты из свинины, колбасные изделия (10-23% жира).

В питании имеет значение не только количество, но и химический состав употребляемых жиров, особенно содержание полиненасыщенных кислот.

Полиненасыщенные жирные кислоты линолевая и линоленовая не синтезируются в организме человека, арахидоновая – синтезируется из линолевой кислоты при участии витамина В6. Поэтому они получили название «незаменимых» или «эссенциальных» кислот.

Эти кислоты участвуют в построении клеточных мембран, регулировании обмена веществ в клетках, кровяного давления, агрегации тромбоцитов, способствуют выведению из организма избыточного количества холестерина.

Среди продуктов питания наиболее богаты полиненасыщенными кислотами растительные масла, особенно кукурузное, подсолнечное, соевое. Арахидоновая кислота в растительных маслах практически отсутствует. В наибольшем количестве арахидоновая кислота содержится в яйцах – 0,5%, субпродуктах 0,2÷0,3%.

Способность жирных кислот, входящих в состав липидов, наиболее полно обеспечивать синтез структурных компонентов клеточных мембран характеризуют с помощью специального коэффициента эффективности метаболизации эссенциальных жирных кислот (КЭМ). КЭМ рассчитывают из выражения (2.1).

 

 

(2.1)


 

 

где – массовая доля арахидоновой кислоты в 100 г жира или 100 г продукта, %;

, , , , , – массовые доли полиненасыщенных жирных кислот с числом углеродных атомов 20 и 22 шт. и числом двойных связей 2, 3 и 5 шт. в 100 г жира или 100 г продукта, %.

 

Для оценки биологической эффективности липидов их химический состав сравнивают с «идеальным» (эталонным) липидом, в 100 г которого содержится 6 г полиненасыщенных жирных кислот (ПНЖК), 20 г насыщенных жирных кислот (НЖК), 35 г олеиновой кислоты (ОК).

При этом липидный скор находят, как отношение массовой доли конкретной фракции жирных кислот в липиде исследуемого продукта к массовой доле этой фракции жирных кислт в «идеальном» липиде:

 

 

(2.2)


 

 

где – содержание исследуемой фракции жирных кислот в 100 г исследуемого липида, г (мг);

  – содержание исследуемой фракции  жирных кислот в 100 г эталонного липида, г (мг).

 

Для получения интегральной (комплексной) оценки, характеризующей усвояемость липидов рассчитывают коэффициент биологической эффективности (выражение 2.3).

 

 

(2.3)


 

 

где – минимальное значение скора фракций жирных кислот-(ты) в исследуемом липиде, ед.;

 – значение скора каждой  группы жирных кислот в исследуемом  липиде, ед.

 

Лекция №6

Тема: Физиологическое значение минеральных веществ в питании человека.

1 Роль минеральных веществ в организме человека.

2 Физиологическая роль отдельных макроэлементов.

3 Физиологическая роль отдельных микроэлементов.

 

1 Роль минеральных веществ в организме человека

Многие элементы в виде минеральных солей, ионов, комплексных соединений и органических веществ входят в состав организма и являются незаменимыми нутриентами. Ежедневное поступление минеральных веществ с пищей и их выведение из организма должно находиться в относительном постоянстве – баланс минеральных веществ.

В организме минеральные вещества содержатся в протоплазме и биологических жидкостях, играют основную роль в обеспечении постоянства осмотического давления в клетках и тканях. Они входят в состав сложных органических соединений (например гемоглобина, гормонов, ферментов), являются пластическим материалом для построения костной и зубной ткани. В виде ионов минеральные вещества участвуют в передаче нервных импульсов и других физиологических процессах организма.

Информация о работе Лекции по "Гигиене питания и химии пищи"