Автор работы: Пользователь скрыл имя, 05 Апреля 2013 в 09:39, контрольная работа
Цель исследования – рассмотреть логико-математические игры в работе со старшими дошкольниками.
Задачи исследования:
1. Конкретизировать представления о возрастных особенностях детей старшего дошкольного возраста.
2. Изучить формирование и развитие логической сферы детей старшего дошкольного возраста.
3. Рассмотреть логико-математические игры как средство активизации обучения математике.
Введение
Глава 1 Психолого-педагогические особенности детей старшего дошкольного возраста
1.1 Возрастные особенности детей старшего дошкольного возраста
1.2 Формирование и развитие логической сферы детей старшего дошкольного возраста
Глава 2 Развитие логического мышления у дошкольников средствами логико-математических игр
2.1 Обучение математике в старшей группе детского сада
2.2 Педагогические возможности игры в развитии логического мышления
2.3 Логико-математические игры как средство активизации обучения математике
Заключение
Список использованной литературы
Анализ - выделение свойств объекта, выделение объекта из группы или выделение группы объектов по определенному признаку.
Например, задан признак: кислый. Сначала у каждого объекта множества проверяется наличие или отсутствие этого признака, а затем они выделяются и объединяются в группу по признаку «кислые».
Синтез - соединение различных
элементов (признаков, свойств) в единое
целое. В психологии анализ и синтез
рассматриваются как
Задания на формирование умения выделить элементы того или иного объекта (признаки), а также на соединение их в единое целое можно предлагать с первых же шагов математического развития ребенка.
Например:
A. Задание на выбор предмета из группы по любому признаку (2-4 года):
Возьми красный мячик. Возьми красный, но не мячик. Возьми мячик, но не красный.
Б. Задание на выбор нескольких предметов по указанному признаку (2-4 года): Выбери все мячики. Выбери круглые, но не мячики.
B. Задание на выбор одного
или нескольких предметов по
нескольким указанным
Выбери маленький синий мячик. Выбери большой красный мячик [4, с. 35].
Задание последнего вида предполагает соединение двух признаков предмета в единое целое.
Для развития продуктивной аналитико-синтетической мыслительной деятельности у ребенка старшего дошкольного возраста в методике рекомендуют задания, в которых ребенку необходимо рассматривать один и тот же объект с разных точек зрения. Способом организации такого всестороннего (или по крайней мере многоаспектного) рассмотрения является прием постановки различных заданий к одному и тому же математическому объекту.
Сравнение - логический прием, требующий выявления сходства и различия между признаками объекта (предмета, явления, группы предметов).
Сравнение требует умения выделять одни признаки объекта и абстрагироваться от других. Для выделения различных признаков объекта можно использовать игру «Найди это»:
· Какие из этих предметов большие желтые? (Мяч и медведь.)
· Что большое желтое круглое? {Мяч.) и т. д.
Старший дошкольник должен использовать роль ведущего так же часто, как и отвечающего, это подготовит его к следующему этапу - умению отвечать на вопрос:
· Что ты можешь рассказать об этом предмете? (Арбуз большой, круглый, зеленый. Солнце круглое, желтое, горячее.)
Вариант. Кто больше расскажет об этом? (Лента длинная, синяя, блестящая, шелковая.)
Вариант. «Что это: белое, холодное, рассыпчатое?» и т. д.
Методически рекомендуется сначала учить старшего дошкольника сравнивать два объекта, затем группы объектов. Дошкольнику легче сначала найти признаки различия объектов, затем - признаки их сходства.
Задания на разделение объектов на группы по какому-то признаку (большие и маленькие, красные и синие и т. п.) требуют сравнения.
Все игры вида «Найди такой же» направлены на формирование умения сравнивать. Для детей старшего дошкольного возраста количество и характер признаков сходства могут широко варьироваться [5, с. 41].
Классификация - разделение
множества на группы по какому-либо
признаку, который называют основанием
классификации. Основание для классификации
может быть задано, но может и
не указываться (этот вариант чаще используется
со старшими детьми, так как требует
умения анализировать, сравнивать и
обобщать). Следует учитывать, что
при классификационном
Классификацию с детьми старшего дошкольного возраста можно проводить:
· по наименованию предметов (чашки и тарелки, ракушки и камешки, кегли и мячики и т. д.);
· по размеру (в одну группу большие мячи, в другую - маленькие мячики; в одну коробку длинные карандаши, в другую - короткие и т. д.);
· по цвету (в эту коробку красные пуговицы, в эту - зеленые);
· по форме (в эту коробку квадраты, а в эту - кружки; в эту коробку - кубики, в эту - кирпичики и т. д.);
· по другим признакам (съедобное и несъедобное, плавающие и летающие животные, лесные и огородные растения, дикие и домашние звери и т. д.) [4, с.48].
Все перечисленные выше примеры - это классификации по заданному основанию: педагог сам сообщает его детям. В другом случае старшие дошкольники определяют основание самостоятельно. Педагог задает только количество групп, на которые следует разделить множество предметов (объектов). При этом основание может быть определено не единственным образом.
При подборе материала для задания педагог должен следить за тем, чтобы не получился набор, ориентирующий детей на несущественные признаки объектов, что будет подталкивать к неверным обобщениям. Следует помнить, что при эмпирических обобщениях дети опираются на внешние, видимые признаки объектов, что не всегда помогает правильно раскрыть их сущность и определить понятие.
Формирование у старших дошкольников способности самостоятельно делать обобщения является крайне важным с общеразвивающей точки зрения. В связи с изменениями в содержании и методике обучения математике в начальной школе, которые ставят своей целью развивать у учащихся способности к эмпирическому, а в перспективе и теоретическому обобщению, важно уже в детском саду обучать детей различным приемам моделирующей деятельности с помощью вещественной, схематической и символической наглядности (В.В. Давыдов), учить ребенка сравнивать, классифицировать, анализировать и обобщать результаты своей деятельности.
Глава 2 Развитие логического
мышления у дошкольников средствами
логико-математических игр
2.1 Обучение математике в старшей группе детского сада
"Программой воспитания
в детском саду" в старшей
группе предусматривается
На примерах составления множеств из разных предметов они знакомятся с количественным составом из единиц чисел до 5. Сравнивая смежные числа в пределах 10 с опорой на наглядный материал, дети усваивают, какое из двух смежных чисел больше, какое меньше, получают элементарное представление о числовой последовательности - о натуральном ряде.
В старшей группе начинают формировать понятие о том, что некоторые предметы можно разделить на несколько равных частей. Дети делят на 2 и 4 части модели геометрических фигур (квадрат, прямоугольник, треугольник) , а также другие предметы, сравнивают целое и части.
Большое внимание уделяют формированию пространственных и временных представлений. Так, дети учатся видеть изменение предметов по размерам, оценивать размеры предметов с точки зрения 3 измерений: длины, ширины, высоты; углубляются их представления о свойствах величин.
Детей учат различать близкие
по форме геометрические фигуры: круг
и фигуру овальной формы, последовательно
анализировать и описывать
У детей закрепляют умение определять словом положение того или иного предмета по отношению к себе ("слева от меня окно, впереди меня шкаф"), по отношению к другому предмету ("справа от куклы сидит заяц, слева от куклы стоит лошадка").
Развивают умение ориентироваться в пространстве: изменять направление движения во время ходьбы, бега, гимнастических упражнений. Учат определять положение ребенка среди окружающих предметов (например, "я стою за стулом", "около стула" и т. п.). Дети запоминают названия и последовательность дней недели.
Наглядные, словесные и практические методы и приемы обучения на занятиях по математике в старшей группе в основном используются в комплексе. Пятилетние дети способны понять познавательную задачу, поставленную педагогом, и действовать в соответствии с его указанием. Постановка задачи позволяет возбудить их познавательную активность. Создаются такие ситуации, когда имеющихся знаний оказывается недостаточно для того, чтобы найти ответ на поставленный вопрос, и возникает потребность узнать что-то новое, научиться новому. Например, педагог спрашивает: "Как узнать, на сколько длина стола больше его ширины?" Известный детям прием приложения применить нельзя. Педагог показывает им новый способ сравнения длин с помощью мерки [11, с. 127].
Побудительным мотивом к поиску являются предложения решить какую-либо игровую или практическую задачу (подобрать пару, изготовить прямоугольник, равный данному, выяснить, каких предметов больше, и др.).
Организуя самостоятельную
работу детей с раздаточным
Закрепление и уточнение знаний, способов действий в ряде случаев осуществляется предложением детям задач, в содержании которых отражаются близкие, понятные им ситуации. Так, они выясняют, какой длины шнурки у ботинок и полуботинок, подбирают ремешок к часам и пр. Заинтересованность детей в решении таких задач обеспечивает активную работу мысли, прочное усвоение знаний. Математические представления "равно", "не равно", "больше - меньше", "целое и часть" и др. формируются на основе сравнения. Дети 5 лет уже могут под руководством педагога последовательно рассматривать предметы, выделять и сопоставлять их однородные признаки. На основе сравнения они выявляют существенные отношения, например отношения равенства и неравенства, последовательности, целого и части и др., делают простейшие умозаключения.
Развитию операций умственной деятельности (анализ, синтез, сравнение, обобщение) в старшей группе уделяют большое внимание. Все эти операции дети выполняют с опорой на наглядность.
Если в младших группах при первичном выделении того или иного свойства сравнивались предметы, отличающиеся лишь одним данным свойством (полоски отличались только длиной, при уяснении понятий "длиннее - короче"), то теперь предъявляются предметы, имеющие уже 2-3 признака различия (например, берут полоски не только разной длины и ширины, но и разных цветов и пр.).
Детей сначала учат производить
сравнение предметов попарно, а
затем сопоставлять сразу несколько
предметов. Одни и те же предметы они
располагают в ряд или
Выделение и усвоение математических
свойств, связей, отношений достигается
выполнением разнообразных
Рассматривание, анализ и сравнение объектов при решении задач одного типа производятся в определенной последовательности. Например, детей учат последовательному анализу и описанию узора, составленного из моделей геометрических фигур, и др. Постепенно они овладевают общим способом решения задач данной категории и сознательно им пользуются. Так как осознание содержания задачи и способов ее решения детьми этого возраста осуществляется в ходе практических действий, ошибки, допускаемые детьми, всегда исправляются через действия с дидактическим материалом [3, с. 25].
В старшей группе расширяют
виды наглядных пособий и несколько
изменяют их характер. В качестве иллюстративного
материала продолжают использовать
игрушки, вещи. Но теперь большое место
занимает работа с картинками, цветными
и силуэтными изображениями предметов,
причем рисунки предметов могут
быть схематичными. С середины учебного
года вводятся простейшие схемы, например
"числовые фигуры", "числовая лесенка",
"схема пути" (картинки, на которых
в определенной последовательности
размещены изображения