Автор работы: Пользователь скрыл имя, 18 Декабря 2013 в 23:50, курсовая работа
В канонической форме задачи линейного программирования необходимо, чтобы все компоненты искомого вектора Х были неотрицательными, а все остальные ограничения записывались в виде уравнений. Т.е. в задаче обязательно будут присутствовать условия вида (2.3) и 8 уравнений вида (2.2), обусловленных неравенствами (2.5), (2.6).
Число ограничений задачи, приводящих к уравнениям (2.2) можно уменьшить, если перед приведением исходной задачи (2.4) - (2.6) к канонической форме мы преобразуем неравенства (2.6) к виду (2.3).
Министерство образования РФ и РТ.
Казанский Государственный Университет им. А.Н. Туполева.
______________________________
Курсовая работа по дисциплине
«Численные методы оптимизации»
Решение задач линейной оптимизации симплекс – методом.
Выполнил: ст.гр.4408 Калинкин А.А.
Проверил: Мурга О.К.
г. Казань 2001г.
Содержание
|
1. Постановка задачи
1.1. Физическая (техническая) постановка задачи
Нефтеперерабатывающий завод получает четыре полуфабриката:
В результате смешивания этих четырёх компонентов в разных пропорциях образуются три сорта авиационного бензина:
Стоимость 1 тыс.л. указанных сортов бензина:
Необходимо определить план смешения компонентов, при котором будет достигнута максимальная стоимость все продукции. При следующих условиях:
Сводная таблица условий задачи:
Компоненты, используемые для производства трёх видов бензина. |
Сорта производимого бензина |
Объем ресурсов (тыс. л) | ||
А |
В |
С | ||
Алкилат |
400 | |||
Крекинг-бензин |
250 | |||
Бензин прямой перегонки |
300 | |||
Изопентат |
250 | |||
Цена бензина (рублей за 1 тыс.л.) |
120 |
100 |
150 |
1.2. Математическая постановка задачи
Исходя из условий задачи, необходимо
максимизировать следующую
- объемы бензина А-го, В-го и С-го сорта соответственно.
Тогда
объёмная доля первой компоненты (алкилата) в бензине А.
объёмная доля первой компоненты (алкилата) в бензине В.
объёмная доля первой компоненты (алкилата) в бензине С.
и т.д.
Целевая функция выражает стоимость всей продукции в зависимости от объема производимого бензина каждого сорта. Таким образом, для получения максимальной стоимости продукции необходимо максимизировать целевую функцию (1.2.1) с соблюдением всех условий задачи, которые накладывают ограничения (1.2.2) на .
2. Приведение задачи к канонической форме
Задача линейного
Требуется найти вектор , доставляющий максимум линейной форме
(2.1)
при условиях
(2.2)
(2.3)
где
Перепишем исходную задачу (1.2.1) - (1.2.2):
, где
В канонической форме задачи линейного программирования необходимо, чтобы все компоненты искомого вектора Х были неотрицательными, а все остальные ограничения записывались в виде уравнений. Т.е. в задаче обязательно будут присутствовать условия вида (2.3) и 8 уравнений вида (2.2), обусловленных неравенствами (2.5), (2.6).
Число ограничений задачи, приводящих к уравнениям (2.2) можно уменьшить, если перед приведением исходной задачи (2.4) - (2.6) к канонической форме мы преобразуем неравенства (2.6) к виду (2.3). Для этого перенесем свободные члены правых частей неравенств (2.6) в левые части. Таким образом, от старых переменных перейдем к новым переменным , где :
, .
Выразим теперь старые переменные через новые
, (2.7)
и подставим их в линейную форму (2.4) и в неравенства (2.5), (2.6). Получим
, где .
Раскрывая скобки и учитывая, что
можем окончательно записать:
(2.9)
, где
Путем несложных преобразований задачу (1.2.1), (1.2.2) свели к задаче (2.9) - (2.11) с меньшим числом ограничений.
Для записи неравенств (2.10) в виде уравнений введем неотрицательные дополнительные переменные , и задача (2.9) - (2.11) запишется в следующей эквивалентной форме:
(2.12)
(2.13)
, где
Задача (2.12), (2.13) имеет каноническую форму.
3. Нахождение начального опорного плана с помощью L-задачи
Начальный опорный план задачи (2.1) - (2.3), записанной в канонической форме, достаточно легко может быть найден с помощью вспомогательной задачи (L-задачи):
(3.1)
(3.2)
(3.3)
Начальный опорный план задачи (3.1) - (3.3) известен. Он состоит из компонент
и имеет единичный базис Б = = E.
Решая вспомогательную задачу первым алгоритмом симплекс-метода (описание алгоритма приводится в п.4), в силу ограниченности линейной формы сверху на множестве своих планов ( ) получим, что процесс решения через конечное число шагов приведет к оптимальному опорному плану вспомогательной задачи.
Пусть - оптимальный опорный план вспомогательной задачи. Тогда является опорным планом исходной задачи. Действительно, все дополнительные переменные . Значит, удовлетворяет условиям исходной задачи, т.е. является некоторым планом задачи (2.12) - (2.13). По построению план является также опорным.
3.1. Постановка L-задачи
Вспомогательная задача для нахождения начального опорного плана задачи (2.12) - (2.13) в канонической форме состоит в следующем.
Требуется обратить в максимум
при условиях
, где .
рассматривая в качестве исходного опорного плана план
Здесь добавление только одной дополнительной переменной (вместо пяти) обусловлено тем, что исходная задача уже содержит четыре единичных вектора условий А4, А5, А6, А7.
3.2. Решение L-задачи
Решение L-задачи будем проводить в соответствии с первым алгоритмом симплекс-метода (описание алгоритма приводится в п.4). Составим таблицу, соответствующую исходному опорному плану (0-й итерации).
Т.к. Б0 = - базис, соответствующий известному опорному плану , является единичной матрицей, то коэффициенты разложения векторов Аj по базису Б0
.
Значение линейной формы и оценки для заполнения (m+1)-й строки таблицы определяются следующими соотношениями:
,
.
Отсюда получим:
;
;
;
…
.
Весь процесс решения задачи приведен в табл. 3.2.1, которая состоит из 2 частей, отвечающих 0-й (исходная таблица) и 1-й итерациям.
Заполняем таблицу 0-й итерации.
Среди оценок имеются отрицательные. Значит, исходный опорный план не является оптимальным. Перейдем к новому базису. В базис будет введен вектор А1 с наименьшей оценкой . Значения t вычисляются для всех позиций столбца t (т.к. все элементы разрешающего столбца положительны). Наименьший элемент достигается на пятой позиции базиса. Значит, пятая строка является разрешающей строкой, и вектор А9 подлежит исключению из базиса.
Составим таблицу, отвечающую первой итерации.
В столбце Бх, в пятой позиции базиса место вектора А9 занимает вектор А1. Соответствующий ему коэффициент линейной формы С41 = 0 помещаем в столбец Сх. Главная часть таблицы 1 заполняется по данным таблицы 0 в соответствии с рекуррентными формулами. Так как все , то опорный план является решением L-задачи. Наибольшее значение линейной формы равно .
Таблица 3.2.1
3.3. Формирование начального опорного плана исходной задачи линейного программирования из оптимального плана L-задачи
Поскольку , где - оптимальный опорный план L-задачи, то является начальным опорным планом исходной задачи (2.12) - (2.13).
4. Решение исходной задачи I алгоритмом симплекс-метода
Описание I алгоритма
Симплекс-метод позволяет, отправляясь от некоторого исходного опорного плана и постепенно улучшая его, получить через конечное число итераций оптимальный план или убедиться в неразрешимости задачи. Каждой итерации соответствует переход от одной таблицы алгоритма к следующей. Таблица, отвечающая опорному плану в ν-й итерации имеет вид табл. 4.1.
Таблица 4.1
C |
… |
… |
… |
||||||||
N |
B |
… |
… |
… |
t | ||||||
1 |
… |
… |
… |
||||||||
|
|||||||||||
l |
… |
… |
… |
||||||||
|
|||||||||||
m |
… |
… |
… |
||||||||
m+1 |
– |
– |
… |
… |
… |
– |
Информация о работе Решение задач линейной оптимизации симплекс – методом