Автор работы: Пользователь скрыл имя, 19 Декабря 2014 в 09:00, реферат
Изучение балансовых моделей, представляющих собой одно из важнейших направлений и экономико-математических исследований, должно служить объектом изучения отдельной дисциплины. Наша цель – проиллюстрировать на примере балансовых расчетов применение основных понятий линейной алгебры.
Решение ( 7 ) можно представить в развернутой форме:
x1 = S11y1 + S12y2 + … + S1nyn
x2 = S21y1 + S22y2 + … + S2nyn ( 8 )
………………………………
xn = Sn1y1 + Sn2y2 + … + Snnyn
Выясним экономический смысл элементов Sik матрицы S.
Пусть производится
только единица конечного
1
_ 0
У1 = :
0
Подставляя этот вектор в равенство ( 7 ), получим
1 S11
_ 0 S21 _
х = S : = : = S1
0 Sn1
0 S12
_ 1 S22 _
х = S : = : = S2
0 Sn2
Аналогично, валовый выпуск х, необходимый для производства единицы конечного продукта k-й отрасли, составит
0 S1k
_ : S2k _
х = S 1 = : = Sk , ( 9 )
: Snk
0
Из равенства ( 9 ) вытекает следующее:
Так при этом виде
конечного продукта
Пусть нас не интересует выпуск для внешнего потребления продукции 2-й отрасли ( k=2 ) и мы хотим определить затраты продукции 1-й отрасли на единицу этой продукции. Из табл.2 находим, что на каждую единицу продукции 2-й отрасли ( х2=1 ) затрачивается: продукции 1-й отрасли a12=0.4 и 2-й отрасли a22=0.1.
Таковы будут прямые затраты. Пусть нужно изготовить у2=100. Можно ли для этого планировать выпуск 1-й отрасли х1=0.4100=40 ? Конечно, нельзя, т.к. необходимо учитывать, что 1-я отрасль часть своей продукции потребляет сама ( а11=0.2 ), и поэтому суммарный ее выпуск следует скорректировать: х1=40+0.240=48. Однако и эта цифра неверна, т.к. теперь уже следует исходить из нового объема продукции 1-й отрасли – х1'=48 и т.д. Но дело не только в этом. Согласно табл.2 продукция 2-й отрасли также необходима для производства и 1-й и 2-й отраслей и поэтому потребуется выпускать больше, чем у2=100. Но тогда возрастут потребности в продукции 1-й отрасли. Тогда достаточно обратиться к составленной систем уравнений, положив у1=0 и у2=1 ( см п.2 ):
0.8х1 - 0.4х2 = 0
-0.55х1 + 0.9х2 = 1
Решив эту систему, получим х1=0.8 и х2=1.5. Следовательно, для того чтобы изготовить единицу конечного продукта 2-й отрасли, необходимо в 1-й отрасли выпустить продукции х1=0.8. Эту величину называют коэффициентом полных затрат и обозначают ее через S12. Таким образом, если а12=0.4 характеризует затраты продукции 1-й отрасли на производство единицы продукции 2-й отрасли, используемые непосредственно во 2-й отрасли ( почему они и были названы прямые затраты ), то S12 учитывают совокупные затраты продукции 1-й отрасли как прямые ( а12 ), так и косвенные затраты, реализуемые через другие ( в данном случае через 1-ю же ) отрасли, но в конечном счете необходимые для обеспечения выпуска единицы конечного продукта 2-й отрасли. Эти косвенные затраты составляют S12-a12=0.8-0.4=0.4
Если коэффициент прямых затрат исчисляется на единицу валового выпуска, например а12=0.4 при х2=1, то коэффициент полных затрат рассчитывается на единицу конечного продукта.
Итак, величина Sik характеризует полные затраты продукции i-й отрасли для производства единицы конечного продукта k-й отрасли, включающие как прямые ( aik ), так и косвенные ( Sik - aik ) затраты.
Очевидно, что всегда Sik > aik.
Если необходимо
x1 = S1k·yk, x2 = S2k·yk, …, xn = Snk·yk ,
_ _
x = Sk·yk ( 10 )
_ у1
xk = Sk1y1 + Sk2y2 + … + Sknyn = Sk·y , ( 11 )
Таким образом, подсчитав матрицу полных затрат S, можно по формулам ( 7 ) – ( 11 ) рассчитать валовый выпуск каждой отрасли и совокупный валовый выпуск всех отраслей при любом заданном ассортиментном векторе У.
Можно также определить,
какое изменение в вектор-
_ _
Δх = S·ΔУ , ( 12 )
Приведем пример расчета коэффициентов полных затрат для балансовой табл.2. Мы имеем матрицу коэффициентов прямых затрат:
0.4
А =
0.55 0.1
1 -0.2 -0.4 0.8 -0.4
Е - А =
-0.55 1 -0.1 -0.55 0.9
D [ E - A ] = = 0.5
-0.55 0.9
0.9 0.4
( Е - А )* = ,
0.55 0.8
S = ( Е - А )-1 = ––– =
Из этой матрицы
заключаем, что полные затраты
продукции 1-й и 2-й отрасли, идущие
на производство единицы
Аналогично, полные затраты
1-й и 2-й отрасли на производство
единицы конечного продукта 2-й
отрасли равны S12=0.8 и S22=1.5, откуда
косвенные затраты составят
Пусть требуется
_ _ 1.8 0.8 480 1000
х = S·У = · =
1.6 170 800 .
Расширим табл.1, включив в нее, кроме производительных затрат xik, затраты труда, капиталовложений и т.д. по каждой отрасли. Эти новые источники затрат впишутся в таблицу как новые n+1-я, n+2-я и т.д. дополнительные строки.
Обозначим затраты труда в k-ю отрасль через xn+1,k, и затраты капиталовложений – через xn+2,k ( где k = 1, 2, …, n ). Подобно тому как вводились прямые затраты aik,
a11
a21 a22 … a2k … a2n основная часть матрицы
…………
А' = ai1 ai2 … aik … ain
…………
an+
При решение балансовых
уравнений по-прежнему
Так, пусть, например, производится единица продукта 1-й отрасли, т.е.
_ 1
У = 0
:
0 .
Для этого требуется валовый выпуск продукции
S11
_ _ S21
x = S1 = :
Sn1
Подсчитаем необходимые при этом затраты труда Sn+1,1. Очевидно, исходя из смысла коэффициентов an+1,k прямых затрат труда как затрат на единицу продукции k-й отрасли и величин S11, S12, …, S1n, характеризующих сколько единиц продукции необходимо выпустить в каждой отрасли, получим затраты труда непосредственно в 1-ю отрасль как an+1,1S11, во 2-ю – an+1,2S21 и т.д., наконец в n-ю отрасль an+1,nSn1. Суммарные затраты труда, связанные с производством единицы конечного продукта 1-й отрасли, составят:
Sn+1,1 = an+1,1S11 + an+1,2S21 + … + an+1,nSn1 = an+1S1 ,
Суммарные затраты труда, необходимые для производства конечного продукта k-й отрасли, составят:
_ _
Sn+1,k = an+1Sk ( 13 )
_ _
Sn+2,k = an+2Sk ( 14 )
Теперь можно дополнить матриц S строками, состоящими из элементов Sn+1,k и Sn+2,k, образовать расширенную матрицу коэффициентов полных затрат:
S' = Si1 Si2 … Sik … Sin
Sn+1,1 Sn+1,2 … Sn+1,k … Sn+1,n дополнительные строки
Sn+2,1 Sn+2,2 … Sn+2,k … Sn+2,n
Пользуясь этой матрицей можно рассчитать при любом заданном ассортиментном векторе У не только необходимый валовый выпуск продукции х ( для чего используется матрица S ), но и необходимые суммарные затраты труда xn+1, капиталовложений xn+2 и т.д., обеспечивающих выпуск данной конечной продукции У.