Правильные многогранники

Автор работы: Пользователь скрыл имя, 12 Апреля 2014 в 22:55, реферат

Краткое описание

Пять правильных многогранников, часто называемых также «телами Платона», захватили воображение математиков, мистиков и философов древности более двух тысяч лет назад. Древние греки даже установили мистическое соответствие между тетраэдром, кубом, октаэдром и икосаэдром и четырьмя природными началами – огнем, землей, воздухом и водой. Что касается пятого правильного многогранника, додекаэдра, то они рассматривали его как форму Вселенной. Эти идеи не являются одним лишь достоянием прошлого. И сейчас, спустя два тысячелетия, многих привлекает лежащее в их основе эстетическое начало.

Прикрепленные файлы: 1 файл

Правильные многогранники.docx

— 72.79 Кб (Скачать документ)

Определение многогранника и его элементов 

Определение: многогранником называется поверхность, составленная из многоугольников и ограничивающая некоторое геометрическое тело. 
Многогранники делятся на выпуклые и невыпуклые

 

Определение: выпуклым многогранником называется такой многогранник, что если взять плоскость любой его грани, то весь многогранник окажется по одну сторону от этой плоскости. 
Выпуклые многогранники, в свою очередь, делятся на неправильные и правильные. 
 
Определение: Правильный многогранник, или Платоново тело — это выпуклый многогранник с максимально возможной симметрией. 
 
Многогранник называется правильным, если: 
 
              1.он выпуклый 
              2. все его грани являются равными правильными многоугольниками. 
              3. в каждой его вершине сходится одинаковое число рёбер

 

Всего существует 5 правильных многогранников:

 

 

Правильный

 многогранник

Число граней

Число вершин

Число ребер

Тетраэдр

4

4

6

Куб

6

8

12

Октаэдр

8

6

12

Додекаэдр

12

20

30

Икосаэдр

20

12

30


 

 

 

Виды правильных многогранников

 

Тетраэдр

 
Тетраэдр составлен из четырех равносторонних треугольников. Каждая его вершина является вершиной трех треугольников. Сумма плоских углов при каждой вершине равна 180 градусов. Таким образом, тетраэдр имеет 4 грани, 4 вершины и 6 ребер.  
 Элементы симметрии: Тетраэдр не имеет центра симметрии, но имеет 3 оси симметрии и 6 плоскостей симметрии.

 

 

 

 
   Куб

Куб составлен из шести квадратов. Каждая его вершина является вершиной трех квадратов. Сумма плоских углов при каждой вершине равна 270 градусов. Таким образом, куб имеет 6 граней, 8 вершин и 12 ребер.  
Элементы симметрии: Куб имеет центр симметрии - центр куба, 9 осей симметрии и 9 плоскостей симметрии. 

 

 

 
                       Октаэдр

 
Октаэдр составлен из восьми равносторонних треугольников. Каждая его вершина является вершиной четырех треугольников. Сумма плоских углов при каждой вершине равна 240 градусов. Таким образом, октаэдр имеет 8 граней, 6 вершин и 12 ребер.  
Элементы симметрии: Октаэдр имеет центр симметрии - центр октаэдра, 9 осей симметрии и 9 плоскостей симметрии.

 

 

 

 

 

 

Икосаэдр

 

Икосаэдр составлен из двадцати равносторонних треугольников. Каждая его вершина является вершиной пяти треугольников. Сумма плоских углов при каждой вершине равна 300 градусов. Таким образом икосаэдр имеет 20 граней, 12 вершин и 30 ребер.  
Элементы симметрии: Икосаэдр имеет центр симметрии - центр икосаэдра, 15 осей симметрии и 15 плоскостей симметрии.  
 
 
Додекаэдр 
 
Додекаэдр составлен из двенадцати равносторонних пятиугольников. Каждая его вершина является вершиной трех пятиугольников. Сумма плоских углов при каждой вершине равна 324 градусов. Таким образом, додекаэдр имеет 12 граней, 20 вершин и 30 ребер. 

 

 

 

 

 

Пять перечисленных выше правильных многогранников, часто называемых также «телами Платона», захватили воображение математиков, мистиков и философов древности более двух тысяч лет назад. Древние греки даже установили мистическое соответствие между тетраэдром, кубом, октаэдром и икосаэдром и четырьмя природными началами – огнем, землей, воздухом и водой. Что касается пятого правильного многогранника, додекаэдра, то они рассматривали его как форму Вселенной. Эти идеи не являются одним лишь достоянием прошлого. И сейчас, спустя два тысячелетия, многих привлекает лежащее в их основе эстетическое начало. 

 

 

 

 

 

 

 

 

 

 

 

Платоновы тела

 
 
Одно из древнейших упоминаний о правильных многогранниках находится в трактате Платона (427-347 до н. э.) "Тимаус". Поэтому правильные многогранники также называются платоновыми телами (хотя известны они были задолго до Платона). Каждый из правильных многогранников, а всего их пять, Платон ассоциировал с четырьмя "земными" элементами (стихиями): земля (куб), вода (икосаэдр), огонь (тетраэдр), воздух (октаэдр), а также с "неземным" элементом - небом (додекаэдр). Знаменитый математик и астроном Кеплер построил модель Солнечной системы как ряд последовательно вписанных и описанных правильных многогранников и сфер.  
 
Простейшим из них является правильный тетраэдр, гранями которого служат четыре равносторонних треугольника и к каждой из вершин примыкают по три грани. Тетраэдру соответствует запись {3, 3}. Это не что иное, как частный случай треугольной пирамиды. Наиболее известен из правильных многогранников куб (иногда называемый правильным гексаэдром) – прямая квадратная призма, все шесть граней которой – квадраты. Так как к каждой вершине примыкают по 3 квадрата, куб обозначается {4, 3}. Если две конгруэнтные квадратные пирамиды с гранями, имеющими форму равносторонних треугольников, совместить основаниями, то получится многогранник, называемый правильным октаэдром. Он ограничен восемью равносторонними треугольниками, к каждой из вершин примыкают по четыре треугольника, и, следовательно, ему соответствует запись {3, 4}. Правильный октаэдр можно рассматривать и как частный случай прямой правильной треугольной антипризмы. Рассмотрим теперь прямую правильную пятиугольную антипризму, грани которой имеют форму равносторонних треугольников, и две правильные пятиугольные пирамиды, основания которых конгруэнтны основанию антипризмы, а грани имеют форму равносторонних треугольников. Если эти пирамиды присоединить к антипризме, совместив их основания, то получится еще один правильный многогранник. Двадцать его граней имеют форму равносторонних треугольников, к каждой вершине примыкают по пять граней. Такой многогранник называется правильным икосаэдром и обозначается {3, 5}. Помимо четырех названных выше правильных многогранников, существует еще один – правильный додекаэдр, ограниченный двенадцатью пятиугольными гранями; к каждой его вершине примыкают по три грани, поэтому додекаэдр обозначается как {5, 3}.

 

 

 

 

 

 

 

 

 

 

"Правильных многогранников вызывающе мало,  но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук". 

(с) - Л. Кэролл.

 

Естественно спросить, существуют ли кроме платоновых тел другие правильные многогранники. Как показывают следующие простые соображения, ответ должен быть отрицательным. Пусть {p, q} – произвольный правильный многогранник. Так как его гранями служат правильные р-угольники, их внутренние углы, как нетрудно показать, равны (180 – 360/р) или 180 (1 – 2/р) градусам. Так как многогранник {p, q} выпуклый, сумма всех внутренних углов по граням, примыкающим к любой из его вершин, должна быть меньше 360 градусов. Но к каждой вершине примыкают q граней, поэтому должно выполняться неравенство  

 

 

 
где символ < означает «меньше чем». После несложных алгебраических преобразований полученное неравенство приводится к виду  

 

 
 
Не трудно видеть, что p и q должны быть больше 2. Подставляя в (1) р = 3, мы обнаруживаем, что единственными допустимыми значениями q в этом случае являются 3, 4 и 5, т.е. получаем многогранники {3, 3}, {3, 4} и {3, 5}. При р = 4 единственным допустимым значением q является 3, т.е. многогранник {4, 3}, при р = 5 неравенству (1) также удовлетворяет только q = 3, т.е. многогранник {5, 3}. При p > 5 допустимых значений q не существует. Следовательно, других правильных многогранников, кроме тел Платона, не существует.  
 
Доказано, что существует пять и только пять правильных выпуклых многогранников. Доказательство того, что больше не может быть, содержится в «Началах» Евклида, причем автором этого доказательства считается Теэтет. Известно, что в течение нескольких лет Теэтет состоял в Академии и был близок к Платону, и этой близостью можно объяснить то обстоятельство, что Платон оказался знакомым с новейшими в то время открытиями в области стереометрии.

 

 

 

 

Теорема Эйлера

 

Теорема Эйлера для многогранников  — теорема, устанавливающая связь между числом вершин, рёбер и граней для многогранников, топологически эквивалентных сфере.

 

 

Правильный многогранник

Число граней и вершин(Г+В)

Число ребер(Р)

Тетраэдр

4+4=8

6

Куб

6+8=14

12

Октаэдр

8+6=14

12

Додекаэдр

12+20=32

30

Икосаэдр

20+12=32

30


 

 «Сумма числа граней и  вершин равна числу ребер, увеличенному  на 2»:   Г + В = Р + 2. 
 
Итак, получена формула, которая была подмечена уже Декартом в 1640 году, а позднее переоткрыта Эйлером (1752), имя которого с тех пор она и носит. Формула Эйлера верна для любых выпуклых многогранников.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Свойства правильных многогранников

 
 
Вершины любого правильного многогранника лежат на сфере. Помимо этой сферы, называемой «описанной сферой», имеются еще две важные сферы. Одна из них, «срединная сфера», проходит через середины всех ребер, а другая, «вписанная сфера», касается всех граней в их центрах. Все три сферы имеют общий центр, который называется центром многогранника.  
 
Двойственные многогранники. Рассмотрим правильный многогранник {p, q} и его срединную сферу S. Средняя точка каждого ребра касается сферы. Заменяя каждое ребро отрезком перпендикулярной прямой, касательной к S в той же точке, мы получим N1 ребер многогранника, двойственного многограннику {p, q}. Нетрудно показать, что гранями двойственного многогранника служат правильные q-угольники и что к каждой вершине примыкают рграней. Следовательно, многограннику {p, q} двойствен правильный многогранник {q, p}. Многограннику {3, 3} двойствен другой многогранник {3, 3}, конгруэнтный исходному (поэтому {3, 3} называется самодвойственным многогранником), многограннику {4, 3} двойствен многогранник {3, 4}, а многограннику {5, 3} – многогранник {3, 5}. На рис. 3 многогранники {4, 3} и {3, 4} показаны в положении двойственности друг другу. Кроме того, каждой вершине, каждому ребру и каждой грани многогранника {p, q} соответствует единственная грань, единственное ребро и единственная вершина двойственного многогранника {q, p}. Следовательно, если {p, q} имеет N0 вершин, N1 ребер и N2 граней, то {q, p} имеет N2 вершин, N1 ребер и N0 граней.  
 
Так как каждая из N2 граней правильного многогранника {p, q} ограничена р ребрами и каждое ребро является общим ровно для двух граней, то всего имеется pN2/2 ребер, поэтому N1 = pN2/2. У двойственного многогранника {q, p} ребер также N1 и N0 граней, поэтому N1 = qN0/2. Таким образом, числа N0,N1 и N2 для любого правильного многогранника {p, q} связаны соотношением 

 
 

 
 
Симметрия. Основной интерес к правильным многогранникам вызывает большое число симметрий, которыми они обладают. Под симметрией (или преобразованием симметрии) многогранника мы понимаем такое его движение как твердого тела в пространстве (например, поворот вокруг некоторой прямой, отражение относительно некоторой плоскости и т.д.), которое оставляет неизменными множества вершин, ребер и граней многогранника. Иначе говоря, под действием преобразования симметрии вершина, ребро или грань либо сохраняет свое исходное положение, либо переводится в исходное положение другой вершины, другого ребра или другой грани.  
 
Существует одна симметрия, которая свойственна всем многогранникам. Речь идет о тождественном преобразовании, оставляющем любую точку в исходном положении. С менее тривиальным примером симметрии мы встречаемся в случае прямой правильной р-угольной призмы. Пусть l – прямая, соединяющая центры оснований. Поворот вокруг l на любое целое кратное угла 360/р градусов является симметрией. Пусть, далее, π– плоскость, проходящая посредине между основаниями параллельно им. Отражение относительно плоскости π (движение, переводящее любую точку P в точку P' , такую, что pпересекает отрезок PP' под прямым углом и делит его пополам) – еще одна симметрия. Комбинируя отражение относительно плоскости π с поворотом вокруг прямой l, мы получим еще одну симметрию.  
 
Любую симметрию многогранника можно представить в виде произведения отражений. Под произведением нескольких движений многогранника как твердого тела здесь понимается выполнение отдельных движений в определенном заранее установленном порядке. Например, упоминавшийся выше поворот на угол 360/р градусов вокруг прямой l есть произведение отражений относительно любых двух плоскостей, содержащих l и образующих относительно друг друга угол в 180/р градусов. Симметрия, являющаяся произведением четного числа отражений, называется прямой, в противном случае – обратной. Таким образом, любой поворот вокруг прямой – прямая симметрия. Любое отражение есть обратная симметрия.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Полуправильные многогранники

 
 
Полуправильные многогранники являются естественным расширением правильных многогранников. Это выпуклые многогранники, гранями которых являются правильные многоугольники, - возможно, с разным числом сторон, и в каждой вершине сходится одинаковое число граней. Большинство из них были открыты еще Архимедом. Но открывались они и в ХХ веке. 
 
Самые простые из многогранников Архимеда получаются из правильных многогранников операцией «усечения», состоящей в отсечении плоскостями углов многогранника. Так, если срезать углы тетраэдра плоскостями, каждая из которых отсекает третью часть его ребер, выходящих из одной вершины, то получим усеченный тетраэдр, имеющий восемь граней (рис.1). Из них четыре – правильные шестиугольники и четыре – правильные треугольники. В каждой вершине этого многогранника сходится три грани.

 
 

 

 
Если указанным образом срезать вершины октаэдра и икосаэдра, то получим соответственно усеченный октаэдр (рис.2) и усеченный икосаэдр (рис.3). Обратите внимание на то , что поверхность футбольного мяча изготавливают в форме поверхности усеченного икосаэдра. Из куба и додекаэдра также можно получить усеченный куб (рис.4) и усеченный додекаэдр (рис.5).  
 
Для того, чтобы получить еще один правильный многогранник, проведем в кубе отсекающие плоскости через середины ребер, выходящих из одной вершины. В результате получим полуправильный многогранник, который называется кубооктаэдром (рис.6). Его гранями являются шесть квадратов, как у куба, и восемь правильных треугольников, как у октаэдра. Отсюда и название – кубооктаэдр. 
 
Аналогично, если в додекаэдре отсекающие плоскости провести через середины ребер, выходящих из одной вершины, то получим многогранник, который называется икосододекаэдром (рис.7). У него двадцать граней – правильные треугольники и двенадцать граней – правильные пятиугольники, то есть все грани икосаэдра и додекаэдра. 
 
Еще два многогранника называются усеченный кубооктаэдр (рис.8) и усеченный икосододекаэдр (рис.9), хотя их нельзя получить усечением кубооктаэдра и икосододекаэдра. Отсечение углов этих многогранников дает не квадраты, а прямоугольники. 
 
Мы рассмотрели 9 из 13 описанных Архимедом полуправильных многогранников. Четыре оставшихся – многогранники более сложного типа. 
 
На рисунке 10 мы видим ромбокубооктаэдр. Его поверхность состоит из граней куба и октаэдра, к которым добавлены еще 12 квадратов. 
 
На рисунке 11 изображен ромбоикосододекаэдр, поверхность которого состоит из граней икосаэдра, додекаэдра и еще 30 квадратов. На рисунках 12, 13 представлены так называемые плосконосый (курносый) куб и плосконосый (курносый) додекаэдр, поверхности которых состоят из граней куба или додекаэдра, окруженных правильными треугольниками. 
 
Кроме этих тринадцати тел Архимеда в число полуправильных многогранников включается 14-й многогранник, называемый псевдоархимедовым (рис.14). Он получается из ромбокубооктаэдра поворотом нижней чаши на 45º.  
 
Конечно, еcли в определении полуправильного многогранника ослабить второе условие, то можно найти и другие многогранники удовлетворяющие этому определению. По крайней мере, есть еще пять многогранников, получаемых поворотом их частей. 
 
Так, если повернуть нижнюю или верхнюю чашу икосододекаэдра на 36°, то получим новый многогранник, гранями которого являются правильные пятиугольники и треугольники и в каждой вершине сходится четыре ребра. 
 
Поворачивая чаши ромбоикосододекаэдра можно получить еще четыре многогранника, гранями которых являются квадраты и правильные пятиугольники и треугольники, а в каждой вершине сходится четыре ребра. 
 
Какое же определение полуправильного многогранника правильное? Какое определение имел в виду Архидем, описавший тринадцать полуправильных многогранников? Знал ли он о псевдоархимедовом теле или не догадался, что можно повернуть чашу кубооктаэдра? К сожалению, определение полуправильного многогранника, которым пользовался Архимед, не дошло до нас. По-видимому, Архимед не считал псевдоархимедов многогранник полуправильным многогранником. 
 
Действительно, по внешнему виду псевдоархимедов многогранник не такой «правильный», как многогранники Архимеда. Но чем же определяется «правильность»? 
 
Представим полуправильный многогранник, сделанный из прозрачного материала, и посмотрим сквозь одну n-угольную грань. Мы увидим остальные грани, расположенные в определенном порядке. Точно такую же картину мы увидим, если посмотрим сквозь другую n-угольную грань этого многогранника. Этим свойством обладают все полуправильные многогранники, а псевдоархимедов многогранник – нет. Если посмотреть сквозь верхнюю квадратную грань и сквозь боковую квадратную грань, то мы увидим разные расположения остальных граней. 
 
Для тел Архимеда выполняется следующее свойство: для любых двух вершин существует симметрия, при которой одна вершина переходит в другую. Это означает, что не только все многогранные углы равно, но что для любых двух многогранных углов существует движение многогранника, переводящее один из них в другой. Конечно, это более сильное условие, чем просто равенство многогранных углов. Этому условию не удовлетворяет псевдоархимедов многогранник. 
 
Таким образом, имеется три варианта определения полуправильного многогранника. 
 
Определение 1. Полуправильным многогранником называется выпуклый многогранник, поверхность которого состоит из правильных многоугольников, - возможно, с разным числом сторон – и в каждой вершине одинаковое число ребер. В этом случае, помимо двух бесконечных серий призм и антипризм, имеется по крайней мере 19 таких многогранников. 
 
Определение 2. полуправильным многогранником называется выпуклый многогранник, поверхность которого состоит из правильных многоугольников, - возможно, с разным числом сторон, - и все эти многогранные углы равны. В этом случае, помимо двух бесконечных серий призм и антипризм, имеется 14 таких многогранников – 13 тел Архимеда и псевдоархимедов многогранник. 
 
Определение 3. Полуправильным многогранником называется выпуклый многогранник, поверхность которого состоит из правильных многоугольников, - возможно с разным числом сторон, - и для любых двух вершин существует симметрия многогранника, переводящая одну из них в другую. В этом случае, помимо двух бесконечных серий, имеется 13 таких многогранников – многогранников Архимеда. 
 
Можно предположить, что Архимед пользовался именно третьим определением.

Информация о работе Правильные многогранники