Автор работы: Пользователь скрыл имя, 10 Июня 2013 в 22:06, реферат
Л.Эйлер внес очень большой вклад в развитие математического анализа.
Цель реферата – изучить историю развития математического анализа в XVIII веке.
1 Понятие математического анализа. Исторический очерк
2 Вклад Л.Эйлера в развитие математического анализа
3 Дальнейшее развитие математического анализа
Заключение
Список литературы
Замечательны многочисленные работы Эйлера по небесной механике, среди которых наиболее известна его «Новая теория движения Луны» (1772), существенно продвинувшая важнейший для мореходства того времени раздел небесной механики.
Наряду с общетеоретическими исследованиями, Эйлеру принадлежит ряд важных работ по прикладным наукам. Среди них первое место занимает теория корабля. Вопросы плавучести, остойчивости корабля и других его мореходных качеств были разработаны Эйлером в его двухтомной «Корабельной науке» (1749), а некоторые вопросы строительной механики корабля – в последующих работах. Более доступное изложение теории корабля он дал в «Полной теории строения и вождения кораблей» (1773), которая использовалась в качестве практического руководства не только в России.
Значительный успех имели
Много работ Эйлера посвящено различным вопросам физики, главным образом геометрической оптике. Особого упоминания заслуживают изданные Эйлером три тома «Писем к немецкой принцессе о разных предметах физики и философии» (1768–1772), выдержавшие впоследствии около 40 изданий на девяти европейских языках. Эти «Письма» были своего рода учебным руководством по основам науки того времени, хотя собственно философская сторона их и не соответствовала духу эпохи Просвещения.
Современная пятитомная «Математическая
энциклопедия» указывает
Наряду с многочисленными
Петербургский архив Российской Академии
наук хранит, кроме того, тысячи страниц
неопубликованных исследований Эйлера,
преимущественно в области
Его научный авторитет при жизни был безграничен. Он состоял почетным членом всех крупнейших академий и ученых обществ мира. Влияние его трудов было весьма значительным и в XIX в. В 1849 Карл Гаусс писал, что «изучение всех работ Эйлера останется навсегда лучшей, ничем не заменимой, школой в различных областях математики».
Общий объем сочинений Эйлера громаден. Свыше 800 его опубликованных научных работ составляют около 30 000 печатных страниц и складываются в основном из следующего: 600 статей в изданиях Петербургской Академии наук, 130 статей, опубликованных в Берлине, 30 статей в разных журналах Европы, 15 мемуаров, удостоенных премий и поощрений Парижской Академии наук, и 40 книг отдельных сочинений. Все это составит 72 тома близкого к завершению «Полного собрания трудов» (Opera omnia) Эйлера, издаваемого в Швейцарии с 1911. Все работы печатаются здесь на том языке, на котором они были первоначально опубликованы (т.е. на латинском и французском языках, которые были в середине XVIII в. основными рабочими языками, соответственно, Петербургской и Берлинской академий). К этому добавится еще 10 томов его Научной переписки, к изданию которой приступили в 1975.
Надо отметить особое значение Эйлера для Петербургской Академии наук, с которой он был тесно связан на протяжении свыше полувека. «Вместе с Петром I и Ломоносовым, – писал академик С.И.Вавилов, – Эйлер стал добрым гением нашей Академии, определившим ее славу, ее крепость, ее продуктивность». Можно добавить еще, что дела Петербургской академии велись в течение почти целого века под руководством потомков и учеников Эйлера: непременными секретарями Академии с 1769 до 1855 были последовательно его сын, зять сына и правнук.
Он вырастил трех сыновей. Старший
из них был петербургским
Перемены в математическом анализе
отражены в обширном трактате Эйлера.
Изложение анализа открывает
двухтомное «Введение», где собраны
изыскания о различных
Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этой переменного количества и чисел или постоянных количеств.
Подчёркивая, что «основное различие
функций лежит в способе
Операции в выражении
,
в котором лишь поздние авторы видели предельный переход. С аналитическими выражениями производились разнообразные преобразования, позволившие Эйлеру найти представления для элементарных функций в виде рядов, бесконечных произведений и т. д. Эйлер преобразует выражения для счёта так, как это делают в алгебре, не обращая внимания на возможность вычислить значение функции в точке по каждой из написанных формул.
В отличие от Лопиталя Эйлер подробно рассматривает трансцендентные функции и в особенности два наиболее изученные их классы — показательные и тригонометрические. Он обнаруживает, что все элементарные функции могут быть выражены при помощи арифметических действий и двух операций — взятия логарифма и экспоненты.
Сам ход доказательства прекрасно
демонстрирует технику
а отсюда
Полагая и z = nx, он получает
,
отбрасывая бесконечно малые величины большего порядка. Используя это и аналогичное выражение, Эйлер получает и свою знаменитую формулу
.
Указав различные выражения
для функций, которые теперь называют
элементарными, Эйлер переходит
к рассмотрению кривых на плоскости,
начертанным свободным
Изложение дифференциального исчисления
Эйлер начинает с теории конечных
разностей, за ним в третьей главе
следует философское
В трёхтомном интегральном исчислении Эйлер трактует понятие интеграла так:
«Та функция, дифференциал которой = Xdx, называется его интегралом и обозначается знаком S, поставленным спереди».
В целом же эта часть трактата Эйлера посвящена более общей с современной точки зрения задаче об интегрировании дифференциальных уравнений. При этом Эйлер находит ряд интегралов и дифференциальных уравнений, которые приводят к новым функциям, напр., Γ-функции, эллиптические функции и т. д. Строгое доказательство их неэлементарности было дано в 1830-х годах Якоби для эллиптических функций и Лиувиллем.
3 Дальнейшее развитие математического анализа
Следующим крупным произведением, сыгравшим значительную роль в развитии концепции анализа, явилась «Теория аналитических функций» Лагранжа и обширный пересказ работ Лагранжа, выполненный Лакруа в несколько эклектической манере.
Желая избавиться от бесконечно малого вовсе, Лагранж обратил связь между производными и рядом Тейлора. Под аналитической функцией Лагранж понимал произвольную функцию, исследуемую методами анализа. Саму функцию он обозначил как f(x), дав графический способ записи зависимости - ранее же Эйлер обходился одними переменными. Для применения методов анализа по мнению Лагранжа необходимо, чтобы функция разлагалась в ряд
,
коэффициенты которого будут новыми функциями x. Остаётся назвать p производной (дифференциальным коэффициентом) и обозначить его как f'(x). Таким образом, понятие производной вводится на второй странице трактата и без помощи бесконечно малых. Остаётся заметить, что
,
поэтому коэффициент q является удвоенной производной производной f(x), то есть
и т. д.[24]
Такой подход к трактовке понятия производной используется в современной алгебре и послужил основой для создания теории аналитических функций Вейерштрасса.
Лагранж оперировал такими рядами как формальными и получил ряд замечательных теорем. В частности, впервые и вполне строго доказал разрешимость начальной задачи для обыкновенных дифференциальных уравнений в формальных степенных рядах.
Вопрос об оценке точности приближений, доставляемых частными суммами ряда Тейлора, впервые был поставлен именно Лагранжем: в конце Теории аналитических функций он вывел то, что теперь называют формулой Тейлора с остаточным членом в форме Лагранжа. Однако, в противоположность современным авторам, Лагранж не видел нужды в употреблении этого результата для обоснования сходимости ряда Тейлора.
Вопрос о том, действительно ли функции, употребимые в анализе, могут быть разложены в степенной ряд, впоследствии стал предметом дискуссии. Конечно, Лагранжу было известно, что в некоторых точках элементарные функции могут не разлагаться в степенной ряд, однако в этих точка они и недифференцируемы ни в каком смысле. Коши в своём Алгебраическом анализе привёл в качестве контрпримера функцию
доопределённую нулём в нуле. Эта функция всюду гладкая на вещественной оси и в нуле имеет нулевой ряд Маклорена, который, следовательно, не сходится к значению f(x). Против этого примера Пуассон возразил, что Лагранж определял функцию как единое аналитическое выражение, в примере Коши же функция задана по разному в нуле, и при . Лишь в конце XIX века Прингсхейм доказал, что существует бесконечно дифференцируемая функция, заданная единым выражением, ряд Маклорена для которой расходится. Пример такой функцией доставляет выражение
.
В XVIII веке были разработаны и практически
применены такие разделы
В XIX веке Коши первым дал анализу
твёрдое логическое обоснование, введя
понятие предела
В последней трети XIX века Вейерштрасс произвёл арифметизацию анализа, полагая геометрическое обоснование недостаточным, и предложил классическое определение предела через ε-δ-язык. Он же создал первую строгую теорию множества вещественных чисел. В это же время попытки усовершенствования теоремы об интегрируемости по Риману привели к созданию классификации разрывности вещественных функций. Также были открыты «патологические» примеры (нигде не дифференцируемые непрерывные функции, заполняющие пространство кривые). В связи с этим Жордан разработал теорию меры, а Кантор - теорию множеств, и в начале XX века математический анализ был формализован с их помощью. Другим важным событием XX века стала разработка нестандартного анализа как альтернативного подхода к обоснованию анализа.
Заключение
Завершая работу над рефератом
можно прийти к выводу, что математический
анализ – это совокупность разделов
математики, посвященных исследованию
функций и их обобщений методами
дифференциального и
Большой вклад в развитие математического анализа внес Л.Эйлер. Он принадлежит к числу гениев, чь творчество стало достоянием всего человечества. До сих пор школьники всех стран изучают тригонометрию и логарифмы в том виде, какой придал им Эйлер. Студенты проходят высшую математику по руководствам, первыми образцами которых явились классические монографии Эйлера. Он был прежде всего математиком, но он знал, что почвой, на которой расцветает математика, является практическая деятельность. Он оставил важнейшие труды по самым различным отраслям математики, механики, физики, астрономии и по ряду прикладных наук. Трудно даже перечислить все отрасли, в которых трудился великий учёный.
Информация о работе Понятие математического анализа. Исторический очерк