Непрерывность и дифференцируемость функции 2-х переменных

Автор работы: Пользователь скрыл имя, 22 Декабря 2012 в 16:18, курсовая работа

Краткое описание

Математика представляет собой один из самых важных фундаментальных наук. Слово "математика" произошло от греческого слова "матема", что означает знания. Возникла математика на первых же этапах человеческого развития в связи с практической деятельностью людей. С самых древних времен люди, производя различные работы, встречались с необходимостью выделения и образования тех или иных совокупностей объектов, участков земли, жилищных потребностей объектов, жилищных помещений.

Содержание

Введение……………………………………………………………….…………3
Глава 1. Дифференцируемость функций двух переменных…………..…4
1.1. Понятие функции двух переменных ……………………………..4
1.2. Предел функции в точке …………………………………………..5
1.3. Непрерывность функции двух переменных в точке.…………….6
1.4. Частные производные ……………………………………………..8
1.5 Дифференцируемость функции двух переменных, дифференциал……………………………………………………………14
Геометрический смысл дифференциала ……………..……...…...15
Экстремумы функции двух переменных…………………………17
Глава 2. Связь между основными понятиями………………………….…21
2.1. Непрерывность и ограниченность функции………………….…21
2.2. Существование частных производных в точке и непрерывность функции в этой точке…………….………………………………………21
2.3. Непрерывность частных производных в точке и дифференцируемость функции в этой точке………………………..….24
2.4. Непрерывность функции в точке и ее дифференцируемость в этой точке………………..………………………………………………..27
Заключение……………………………………………………………………….29
Список использованной литературы……………………………………..…….30