Метод координат. Трехмерные пространства

Автор работы: Пользователь скрыл имя, 04 Июня 2015 в 17:57, реферат

Краткое описание

Метод координат и трехмерная геометрия в настоящее время широко применяются в математике и физике для наглядного представления уравнений с несколькими неизвестными, функций нескольких переменных и систем с несколькими степенями свободы.
Геометрический язык позволяет применить к решению сложных задач геометрическую интуицию, сложившуюся в нашем обычном пространстве.
К множеству задач, решаемых с помощью трехмерной геометрии, относятся задачи о нахождении более выгодных вариантов перевозок, задачи о наиболее выгодных способах раскроя материала, наиболее эффективных режимах работы предприятий, задачи о составлении производственных планов и т. п. Тот факт, что эти задачи решаются геометрически с помощью нахождения наибольших или наименьших значений линейных функций на многогранниках (причём, как правило, в пространствах, имеющую размерность, большую трёх) был впервые подмечен Л. В. Канторовичем. Необходимость рассмотрения n-мерных пространств при n > 3 диктуется также математическими задачами физики, химии, биологии и других областей знания.

Содержание

Введение 3
1 Метод координат 4
1.1 Коллинеарные векторы 4
1.2 Компланарные векторы 5
1.3.Метод координат на плоскости 7
1.4 Аффинная система координат на плоскости. 7
1.5 Декартова система координат на плоскости. Прямая и окружность 12
2 Метрические задачи в трехмерном пространств 14
2.1 Многомерность пространства 14
2.2 Векторы в трехмерном геометрическом пространстве 15
2.3 Соглашение Эйнштейна об обозначениях 16
2.4 Линейная зависимость векторов и размерность пространства 17
3 Применение метода координат 22
Заключение 28
Список использованной литературы 30

Прикрепленные файлы: 1 файл

реферат Метод координат. Метрические задачи в трехмерном пространстве.doc

— 554.50 Кб (Скачать документ)

 

Содержание

 

Введение

Метод координат и трехмерная геометрия в настоящее время широко применяются в математике и физике для наглядного представления уравнений с несколькими неизвестными, функций нескольких переменных и систем с несколькими степенями свободы.

Геометрический язык позволяет применить к решению сложных задач геометрическую интуицию, сложившуюся в нашем обычном пространстве.

К множеству задач, решаемых с помощью трехмерной геометрии, относятся задачи о нахождении более выгодных вариантов перевозок, задачи о наиболее выгодных способах раскроя материала, наиболее эффективных режимах работы предприятий, задачи о составлении производственных планов и т. п. Тот факт, что эти задачи решаются геометрически с помощью нахождения наибольших или наименьших значений линейных функций на многогранниках (причём, как правило, в пространствах, имеющую размерность, большую трёх) был впервые подмечен Л. В. Канторовичем. Необходимость рассмотрения n-мерных пространств при n > 3 диктуется также математическими задачами физики, химии, биологии и других областей знания.

Таким образом, пространственные свойства окружающего мира хорошо описываются геометрическим трёхмерным пространством. Целью  работы является рассмотрение методов построения трехмерных пространств.

Объектом работы является теория метода координат и трехмерных пространств и их практическая значимость.

 

1 Метод координат

Метод координат определяет наиболее сильную сторону векторной алгебры. Вот, что об этом говорит Петр Константинович Рашевский:

"... большую и часто ведущую  роль в геометрии играет координатный  метод. Здесь геометрические образы  изучаются не непосредственно  геометрически, а методами алгебры (аналитическая геометрия), а затем  и анализа (дифференциальная геометрия). Огромная сила этого метода основана на то, что он применяет к геометрии сильный, хорошо развитый вычислительный аппарат алгебры и анализа. В результате удается ставить и решать вопросы, лишь малая часть которых укладывается в сравнительно узкие рамки прямых геометрических методов" [13, с. 103].

1.1 Коллинеарные векторы

Определение: Векторы называются коллинеарными, если они параллельны.

Если бы всегда иметь дело с геометрическими векторами, то новое слово "коллинеарные" было бы излишним. Понятие о параллельных объектах слишком сильно связано с нашими геометрическими представлениями. Однако в математике слово "вектор" имеет более широкое значение, и применяется для таких векторов, про которые нельзя сказать, что они параллельны.

Поскольку векторы, которые могут быть совмещены при помощи параллельного переноса, считаются равными, можно коллинеарные векторы рассматривать как лежащие на одной прямой.

Любые два вектора, лежащие на одной прямой, могут различаться длинами и могут иметь либо одинаковые, либо противоположные направления. Поэтому для любых двух коллинеарных векторов и справедливо соотношение: , где – действительное число.

Определение: Если один из векторов, не равный нулю, принять за меру и обозначить его , то все остальные векторы могут быть представлены в единообразной форме . Вектор называется при этом базисным вектором, а – координатой вектора относительно данного базиса. Векторы базиса можно писать без "векторной" черты сверху. Нетрудно видеть, что . Можно также написать, что .

Для коллинеарных векторов все эти определения и обозначения являются излишними, и введены для того, чтобы использовать в более сложных и интересных случаях.

1.2 Компланарные векторы

Определение: Векторы называются компланарными, если они параллельны некоторой плоскости.

Поскольку свободные векторы можно переносить параллельно самим себе в пространстве, то можно считать, что все компланарные векторы лежат в одной плоскости.

Любой вектор, параллельный прямой, можно выразить через базисный вектор на этой прямой , но если вектор на этой прямой не лежит, то этого сделать уже нельзя. Однако, если мы выберем на плоскости два базисных вектора и , то любой другой вектор уже может быть выражен в виде линейной комбинации базисных векторов . При этом векторы и называются базисом, а числа и координатами вектора в этом базисе.

В самом деле, спроектируем вектор на прямую, совпадающую с вектором , по направлению вектора и на прямую, совпадающую с вектором , по направлению вектора (рис. 1).

Рисунок 1.

Очевидно, что . Поскольку каждую проекцию в свою очередь можно выразить через базисный вектор, то . Где,

, .


Метод координат представляет собой глубокий и мощный аппарат, позволяющий привлекать для исследования геометрических объектов. Благодаря универсальности подхода к решению различных задач, метод аналитической геометрии стал основным методом геометрических исследований и широко применяется в других областях точного естествознания – механике, физике.

Аналитическая геометрия объединила геометрию с алгеброй и анализом, что плодотворно сказалось на развитии этих трех разделов математики.

 

1.3.Метод координат на  плоскости

Метод координат лежит в основе аналитической геометрии. Суть системы координат состоит в том, что тем или иным способом устанавливается соответствие между точками плоскости (геометрическими объектами) и упорядоченными парами вещественных чисел (алгебраическими объектами). Вследствие этого геометрические фигуры, представляющие собой множества точек плоскости, оказываются состоящими из таких точек, координаты которых удовлетворяют некоторым алгебраическим соотношениям (уравнениям, неравенствам или их системам). В результате изучение свойств геометрических фигур заменяется изучением свойств алгебраических соотношений, описывающих эти фигуры. Для их изучения, в свою очередь, применяются методы алгебры и математического анализа.

Способов введения на плоскости систем координат существует великое множество. В своей курсовой работе я рассмотрю аффинную (и её частный случай – декартову) систему координат на плоскости.

1.4 Аффинная система  координат на плоскости.

Определение. Аффинная система координат (или аффинным репером) на плоскости называется упорядоченная тройка точек этой плоскости не лежащих на одной прямой: R={О, Е1, Е2}.

Рассмотрим тогда векторы: 1= 1 и 2 = 2 (рис. 2). Поскольку точки О, Е1, Е2, не лежат на одной прямой, поэтому векторы 1 и 2 не коллинеарны, следовательно, они образуют базис совокупности V2 всех векторов плоскости. Таким образом, мы приходим к упорядоченной тройке R={О,   1, 2}, состоящей из точки О и двух неколлинеарных векторов 1 и 2.

Обратно если дана упорядоченная тройка R={О, 1, 2}, состоящая из точки О и двух неколлинеарных векторов 1 и 2, то от неё легко перейти к тройке R={О, Е1, Е2}, отложив векторы 1 и 2 от точки О и взяв соответственно концы этих векторов Е1 и Е2: 1= 1 и  2 = 2. Ясно, что точки О, Е1, Е2, не будут лежать на одной прямой, так как векторы 1 и 2 не коллинеарны.

Таким образом, мы приходим к выводу, что задание на плоскости системы координат как упорядоченной тройки точек R={О, Е1, Е2}, не лежащих на одной прямой, равносильно заданию её как упорядоченной тройки  R={О, 1, 2}, состоящей из точки О и двух неколлинеарных векторов 1 и 2. В результате в геометрическую картину, составленную из точек, вводятся векторы.

Первая точка О в системе координат R называется началом системы координат, а векторы 1 и 2 – её базисными или координатными векторами. Прямая ОЕ1 с направляющим вектором 1 называется координатной осью Ох, или осью абсцисс, а прямая ОЕ2 с направляющим вектором 2 называется координатной осью Оу, или осью ординат.

Пусть на плоскости задана система координат R={О, 1, 2} и произвольная точка М. Вектор = м называется радиус-вектором точки М относительно точки О (или системы координат R).

Определение. Координатами точки М в системе координат R={О,   1, 2} называются координаты её радиус-вектора в базисе 1, 2,  то есть коэффициенты х, у в его разложении в линейную комбинацию векторов базиса: М(х, у)R ó = х1+ у2.

Итак, понятие координат точки тесно связывается с понятием координат вектора, а понятие системы координат для точек – с понятием базиса векторов. «Привязывая» векторный базис к фиксированной точке плоскости (началу координат), мы приходим к системе координат для точек. Если тот же векторный базис «привязать» к другому началу, мы получим другую систему координат для точек.

Векторы и коллинеарны тогда и только тогда, когда их координаты пропорциональны.

Каждой точке М плоскости поставим в соответствие вектор . Координаты вектора называются координатами точки М в данной аффинной системе координат. При этом если = (х, у), то пишут: М (х, у).

Пусть прямые, проведенные через точку М параллельно осям координат, пересекают оси координат соответственно в точках М1 и М2 (рис. 2). Тогда имеем

= 1 + 2.

С другой стороны,

= х1+ у2.

Следовательно,

х =1 / , у = 2 / 2.

Точки Е1 и Е2 имеют координаты: Е1 (1; 0), Е2 (0;1).

Если на плоскости даны две точки А (х1, у1) и В (х2, у2), то координаты вектора вычисляются так:

= - = (х2 - х1, у2 - у1).

Пусть точка С делит отрезок АВ в данном отношении:

Тогда . Из правил действии над векторами в координатах следует, что координаты точки С определяются формулами:

В частности, если С – середина отрезка АВ, то

,

 

Рассмотрим различные способы задания прямой на плоскости.

Пусть требуется написать уравнение прямой l, заданной в некоторой аффинной системе координат точкой М1 (х1, у1) и ненулевым вектором , параллельным прямой l (рис. 3).

Вектор будет называться направляющим вектором прямой  l .

Пусть М (х, у) – произвольная точка прямой l . Тогда, согласно условию, векторы и коллинеарны тогда и только тогда, когда выполняется равенство , или

= 1 + t,

где t – некоторое число (параметр). Это соотношение в координатах запишется так:

Полученные уравнения называют параметрическими уравнениями прямой.

При и  эти уравнения равносильны следующему уравнению первой степени:

Если прямая задана двумя различными точками: А (х1, у1) и В (х2, у2), то вектор = (х2 - х1, у2 - у1) является направляющим вектором прямой l. Следовательно, при х1 х2 и у1 у2 получаем уравнение

,

которое называется уравнением прямой, проходящей через две точки.

В частности, если прямая l проходит через точки А (а, 0) и В (0, b), отличные от начала координат, то уравнение прямой принимает вид

                                             

 

Это уравнение называется уравнением прямой в отрезках.

Исключая из параметрических уравнений прямой параметр t. При  получим уравнение:

у - у1  = k (х - х1),

где . Число k называют угловым коэффициентом прямой. В частном случае, при х1 = 0 и у1 = b, уравнение принимает вид

Если же , то прямая l параллельна оси Оy, а её уравнение запишется так:

х = х1.

Таким образом, всякую прямую на плоскости можно задать уравнение первой степени Ах + Ву + С = 0, где хотя бы одно из чисел А и В отлично от нуля. Верно и обратное предложение: всякое уравнение первой степени Ах + Ву + С = 0 есть уравнение некоторой прямой в аффинной системе координат на плоскости.

При уравнение Ах + Ву + С = 0 приводится к виду у = kх + b, где

,

Если же В = 0 и , то оно принимает вид х = а, где .

1.5 Декартова система координат на плоскости. Прямая и окружность

Определение. Декартовой (или ортонормированной, или прямоугольной) системой координат на плоскости называется такая аффинная система координат, базисные векторы которой ортонормированны, то есть имеют единичные длины и ортогональны (перпендикулярны). Обозначение R = {O, , }; так что || = || = 1, перпендикулярен .

При решении задач, в которых существенную роль играет понятие расстояния между двумя точками, применяется, декартова или прямоугольная система координат.

Пусть даны две точки: А (х1, у1) и В (х2, у2). Тогда, как известно,

.

Пользуясь формулой, запишем уравнение окружности с центром в точке С (a, b) и радиусом r:

.

Вышеизложенная теория прямой справедлива и для прямоугольной системы координат. В частности, при решении задач пользуются уравнением прямой с угловым коэффициентом k, проходящей через точку А (х1, у1):

.

Отсюда следует, что угловой коэффициент прямой, заданной двумя точками А (х1, у1) и В (х2, у2), вычисляется по формуле

Угловой коэффициент в прямоугольной системе координат имеет следующий геометрический смысл: , где – величина угла от оси абсцисс до прямой l.

Пусть прямые l1 и l2 заданы своими уравнениями с угловыми коэффициентами: у = k1х + b1 и у = k2х + b2.

Информация о работе Метод координат. Трехмерные пространства