Автор работы: Пользователь скрыл имя, 11 Апреля 2013 в 10:59, курсовая работа
Целью курсовой работы является рассмотрение высказываний и предикатов в начальном курсе математики.
Задачами курсовой работы является:
- рассмотрение языка кванторов и оснований математической логики;
- анализ понятия предиката.
ВВЕДЕНИЕ 2
ГЛАВА 1. ЯЗЫК КВАНТОРОВ И ОСНОВАНИЯ МАТЕМАТИЧЕСКОЙ ЛОГИКИ 4
1.1. Алгебра высказываний 4
1.2. Высказывания и булевы функции 9
1.3. Логика высказваний 11
1.4. Логика первого и второго порядка 15
ГЛАВА 2. ПОНЯТИЕ ПРЕДИКАТА 20
2.1. Предикаты и кванторы 20
2.2. Кванторы 25
ЗАКЛЮЧЕНИЕ 30
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 31
Наряду с квантором всеобщности в логике предикатов рассматривается другой квантор – «двойственный» ему квантор существования, обозначаемый знаком (это перевернутая латинская буква E, напоминающая немецкое слово «existieren» или английское «exist» - существовать):
(Х)Р(Х)
(читается: «существует такое
X, что Р от X») – высказывание,
которое истинно тогда и
Между кванторами и имеют место отношения равносильности, позволяющие сводить любой из этих кванторов к другому: ù (X) P(X) Û (X) ù P(X) («Неверно, что все X обладают свойством Р (X)» равносильно тому, что «Существует такой объект X, для которого истинно не Р (X)»). Отсюда имеем: (X) Û ù (X)ù P(X). Аналогично, имеет место двойственный закон: ù (X) P(X) Û (X)ù P(X). («Неверно, что существует X, обладающее свойством Р (X)» равносильно «Все X обладают свойством не Р (X)»).
Отсюда (X)Р(X)Ûù (X)ùP(X). Эти равносильности называют правилами де Моргана для кванторов.
С помощью квантора существования легко выражается суждение типа «Некоторые Р суть Q» (например, «Некоторые англичане курят», «Некоторые нечетные числа – простые» и т. п.), т. е. что по крайней мере один объект а, обладающий свойством Р, обладает также свойством Q. Этот факт записывается формулой (X)(Р(X)ÙQ(X)) («Существует такой X, что Р от X и Q от X»).
Аналогично с помощью кванторов записывается ряд других отношений между одноместными предикатами.
Гораздо более богатые
возможности открывает
Пусть А (X, Y) – некоторый
двухместный предикат, определенный
на некотором множестве М. Квантор
всеобщности и квантор
Применение квантора к одной из переменных двухместного предиката превращает его в одноместный. В случае трехместных предикатов применение квантора приводит к двухместному предикату. Аналогично и для предикатов с большим числом мест применение квантора превращает n-местный предикат в (n – 1)-местный.
К свободной переменной X одноместного предиката (У)А(X, Y) в свою очередь можно применять квантор всеобщности или квантор существования. Получаются выражения
(X)( (У)А(X,У)); (X)( (Y)А(X,У)), которые, опуская скобки, принято записывать несколько проще: (X) (У)А(X,У); (X) (Y)А(X,У),
Это – высказывания. Первое
истинно, если все строки, а тем
самым и вся таблица
Нетрудно убедиться в том, что четыре высказывания, содержащие одинаковые кванторы, попарно эквивалентны:
(X) (У)А(X,У) Û (У) (X)А (X, У);
(X) (У)А (X, У) Û (Y) (X)А (X, У).
(X) (У)А(X,У) так же как и (У) (X)А(X, У), истинно тогда и только тогда, когда А (X, У) – тождественно-истинный предикат, (X) (У)А (X, У) и (Y) (X)А(X,У) оба истинны во всех случаях, кроме одного, когда А(X,У) – тождественно-ложный предикат. Все остальные высказывания существенно различны. Особенно следует помнить, что порядок следования разноименных кванторов очень важен.
Я считаю, что к окончанию школы ученики должны овладеть кванторами, но введение их должно быть постепенным и начинаться в простых ситуациях. Учащиеся должны хорошо понимать, что от перестановки кванторов может меняться смысл утверждения.
Например, Пусть I=(а,b) – некоторый интервал. Тогда «Для всякого хÎI существует такой у, что у = f (х)» ( (x) (у) (у = f (х))), означает, что функция f(х) всюду определена на I. Напротив, «Существует такое у, что для всякого х у=f (х)» ( (у) (х)(у=f(х))) означает, что функция f(x) принимает для всех х некоторое фиксированное значение у, т. е. постоянна.
Приведем еще один пример. Корректное определение периодичности всюду определенной функции f(х) выглядит с использованием кванторов так: (c) (x) (c¹0 Ù Ùf(x+c) = f(x)), между тем если переставить кванторы и сформулировать утверждение «Для каждого х существует такое с, что с¹0 и что f(х + с) =f(x)»: (c) (x) (c¹0 Ù f(x+c) = f(x)), то это означает лишь, что функция принимает каждое значение больше чем один раз, т. е. нечто совсем иное.
В математическом анализе часто приходится сталкиваться с кванторами.
Определение предела последовательности из учебника «Алгебра и начала анализа» для 10-11 классов сформулировано так «Число А является пределом последовательности аn, если для любого >0 существует номер N, такой, что при всех n>N верно неравенство ». В кванторном обозначении это определение записывается так:
( >0) (NÎN) (n ÎN)((n>N) Þ
Переставлять кванторы нельзя: именно тот факт, что N под квантором существования следует за выражением ( > 0), указывает на зависимость N от выбранного .
Как выразить утверждение, что
последовательность (хn) сходится? Надо
указать на то, что предел A существует.
С помощью кванторов это
(A) ( > 0) (NÎ N) (nÎN)((n > N) Þ ( )).
Такая запись имеет еще
и то преимущество, что она почти
автоматически позволяет
Эта тема важна для школьной математики. Не овладев ее основными действиями, нельзя понять последующие темы, как, не овладев таблицами сложения и умножения, нельзя научиться арифметике и тем более алгебре.
Исходные объекты алгебры высказываний – это простые высказывания. Их будем обозначать строчными латинскими буквами a, b, c, …, x, y, z. Предполагается, что всякое простое высказывание обладает одним и только одним из двух свойств: либо оно истинно, либо ложно.
Логика высказываний (или пропозициональная логика) - это формальная теория, основным объектом которой служит понятие логического высказывания. С точки зрения выразительности, её можно охарактеризовать как классическую логику нулевого порядка. Логика высказываний является простейшей логикой, максимально близкой к человеческой логике неформальных рассуждений и известна ещё со времён античности.
Базовыми понятиями логики высказываний являются пропозициональная переменная - переменная, значением которой может быть логическое высказывание, - и (пропозициональная) формула, определяемая индуктивно следующим образом:
Если P - пропозициональная переменная, то ¬P - формула.
Если A - формула, то ¬A - формула.
Если A и B - формулы, то (A→B), и - формулы.
Других соглашений нет.
Знаки и → (отрицание, конъюнкция, дизъюнкция и импликация) называются пропозициональными связками. Подформулой называется часть формулы, сама являющаяся формулой. Собственной подформулой называется подформула, не совпадающая со всей формулой.