Кездейсоқ оқиғалар

Автор работы: Пользователь скрыл имя, 21 Апреля 2013 в 00:27, реферат

Краткое описание

Ықтималдық теориясы дегеніміз- жаппай кездейсоқ құбылыстардың математикалық моделі. Ықтималдық теориясының негізгі мақсаты – біртекті кездейсоқ оқиғалардың жалпы ықтималдық заңдылықтарын зерттеу болып табылады. Ықтималдық теориясының алғашқы ұғымдарын дүниеге келтірілген есептер сақтандыру істерін дамытуға байланысты пайда болған. Лоторея ойындары мен сақтандыру компанияларының өмірге келуі ықтималдық теориясының дамуына ықпал жасады. Күнделікті тұрмысымызда көптеген құбылыстар мен олардың өзгерістері кездеседі, солар оқиғаның тууына себепші болады. Мысалы, металл теңгені жоғары қарай лақтырсақ, ол жоғары көтеріліп барып, жерге түседі. Осы жасаған әрекетіміз сынақ немесе тәжірибе деп аталады.

Содержание

І Кіріспе
Ықтималдық теориясы. Кездейсоқтық оқиғалар мен шамалар.
ІІ Негізгі бөлім
Ықтималдықтың анықтамасы
1.1 Кездейсоқ оқиғалардың қасиеттері
1.2 Комбинаторика және ықтималдықты есептеу
2. Кездейсоқ шама.
2.1 Кездейсоқ шаманың қасиеттері
2.2 Математикалық күтім.
ІІІ Қорытынды
Қолданылған әдебиеттер

Прикрепленные файлы: 1 файл

Реферат вышмат.doc

— 194.00 Кб (Скачать документ)

 

 

 

 

Жоспар

 

І Кіріспе

Ықтималдық теориясы. Кездейсоқтық оқиғалар мен   шамалар.

ІІ Негізгі бөлім

  1. Ықтималдықтың анықтамасы

1.1 Кездейсоқ  оқиғалардың қасиеттері

1.2 Комбинаторика  және ықтималдықты есептеу

2. Кездейсоқ шама.

2.1  Кездейсоқ  шаманың қасиеттері

2.2 Математикалық  күтім.

 

 

ІІІ Қорытынды

 

 

Қолданылған әдебиеттер

 

 

 

 

 

 

 

 

 

Кіріспе

Ықтималдық теориясы дегеніміз- жаппай  кездейсоқ құбылыстардың  математикалық моделі. Ықтималдық теориясының негізгі мақсаты – біртекті кездейсоқ оқиғалардың жалпы ықтималдық заңдылықтарын зерттеу болып табылады. Ықтималдық теориясының алғашқы ұғымдарын дүниеге келтірілген есептер сақтандыру істерін дамытуға байланысты пайда болған. Лоторея ойындары мен сақтандыру компанияларының өмірге келуі ықтималдық теориясының дамуына ықпал жасады. Күнделікті тұрмысымызда көптеген құбылыстар мен олардың өзгерістері кездеседі, солар оқиғаның тууына себепші болады. Мысалы, металл теңгені жоғары қарай лақтырсақ, ол жоғары көтеріліп барып, жерге түседі. Осы жасаған әрекетіміз сынақ немесе тәжірибе деп аталады. Жердегі металл теңгенің «елтаңба» немесе «цифр» жағының жоғары жатуы- оқиға болады. Оқиғалар: ақиқатты, мүмкін емес және кездейсоқ болып бөлінеді.Сақамен тізілген асықтарды атқанымыз - сынақ болады. Сақаның тізілген асықтарға тиюі немесе мүлт кетуі оқиға болады. Бұл мысалдан оқиға сынақтың нәтижесі екенін, ал оқиға туғызу үшін сынақ жүргізу керек екенін аңғарамыз. Оқиғаларды латын алфавиті бас әріптерін пайдаланып белгілейміз: А,В,С,... .Егер А оқиғасы әр сынақта сөзсіз пайда болса, онда ол ақиқат оқиға деп аталады. Сынақ кезінде пайда болмайтын оқиға мүмкін емес деп аталады. Сынақ кезінде пайда болуы да, пайда болмауы да мүмкін оқиға кездейсоқ оқиға деп аталады. Кездейсоқ оқиғалар дегеніміз кейбір жағдайларға байланысты сынау кезінде оқиғалардың пайда болуы не болмау мүмкін оқиғаларды айтамыз. Кездейсоқ оқиғалар: үйлесімсіз, бір ғана мүмкіндікті, тең-мүмкіндікті болып бөлінеді. Оқиғалар үйлесімсіз деп аталады, егер бір сонау кезінде оқиғаның пайда болуы оқиғалар бір-бірін шығару орын алатын болса.  Бір ғана мүмкіндікті оқиғалар – егер оқиғалардың пайда болуы сынаудың нәтижесінде тек қана бір оқиғаның пайда болуы ақиқаты оқиға болып саналуын айтамыз.  Мүмкіндіктегі бірдей оқиғалар – оқиғалардың пайда болуы басқа оқиғалардың пайда болу мүмкіндігінен аспайтын оқиғаларды айтады. 

Мақсаты: Заман талабына сай қазіргі техниканың- сенімділік, жаппай қызмет көрсетуі, автоматикалық басқару, өнім сапасын статистикалық бақылау теорияларды да ықтималдық теориясы көмегімен ықтималдық заңдылықтардың математикалық моделін құру арқылы іске асырылады.

Өзектілігі: Қазіргі кездегі ғылым мен техниканың ғарыштап өсу дәуірінде ықтималдықтар теориясының әдістері практиканың сан алуан салаларында кеңінен қолданып, физика, химия, биология құбылыстары, техника мен экономика процесстерінің заңдылықтарын жан-жақты және терең түсінуге орасан зор ықпалын тигізеді.

Болжам: ХХ ғасырдағы тибиғаттану ғылымының келбеті есептелетін кибернетиканың өзі ықтималдық теориясына негізделеді. Сондықтан кездейсоқ оқиғаның математикалық моделін жасаудың алғы-шарты үлкен сериялы сынақтарда кездейсоқ оқиға жиілігінің тұрақты болуына әкеледі. Олай болса, тәжірбиеден алынған нәтиже зауыттың технологиялық процестеріне байланысты заңдылықтарды көрсетеді, ол тек кездейсоқ құбылыстарға тән.

Нәтиже: Математикалық анализ әдістері бізді қоршаған реалды процестерді ықтималдық теориясынсыз толық суреттей алмайды. Сосын көпшілік жағдайда субъективтік ықтималдықтың дәлірек мәнін анықтау қосымша эксперименттің көмегімен шығарылады. Субъективтік ықтималдық туралы арнайы теориялар бар. Сондықтан субъективтік ықтималдықтың тоерияларын дәрігерлер, психологтар қолданылады.

«Жерді Жер серігі айналып жүр» дегеннен басқа ақпарат  болмаса, оның аспан сферасының берілген нүктесінде уақыттың белгілі мезетінде  болуы – кездейсоқ оқиға.

Адам өмірінің практикалық  қажеттілігі ықтималдық негізі бар  жағдайларда шешім қабылдау мен  кездейсоқ факторлардың әсер етуіне талдау жасаумен байланысты. Өмір кездейсоқтыққа толы. Кез келген кездейсоқтыққа дайын  болу үшін кез келген адамда мәліметтерді талдаудың негізгі әдістері, ықтималдық заңдылықтары және олардың ғылым мен техникадағы, сол сияқты өнеркәсіп құрудағы рөлі туралы түсінік болуы қажет. Қазіргі нарықтық экономика жағдайында әрбір адам жас кезінен статистика мәліметтерін меңгергені дұрыс.

1 Ықтималдықтың анықтамасы

Ықтималдық теориясы және матматикалық статистика ұғымдарын  математика курсында кеңейтіп, жалпылау қажет.

Күнделікті өмірде қандай да бір оқиғаны бағалау нәтижесінде, дәл, нақты мағынасына мән берместен, «ықтималдық» ұғымын қолданып жүрміз. Мысалы, «50 пайыз ықтималдыпен», « ықтималдыпен» немесе «100-дің 50 жағдайы», «50-де 50», «екіден бір мүмкіндік» деген сөз тіркестерін толық түсініп, жайбарақат қабылдаймыз. Тиынды лақтырмай-ақ, елтаңба жағы мен цифрдың түссу мүмкіндігі бірдей, ал оқиға нәтижесі  санына тең екеніне келісеміз. Мысалы, егер тиынды лақтыра отырып, әрбір лақтырудан кейін, айталық 800 рет лақтарылғаннан кейінгі нәтижені тіркеген кезде, елтаңба жағы 402 рет түскен болса, онда түсудің салыстырмалы жиілігін аламыз. Әрине, ол дәл емес, бірақ оған өте жақын. Егер әрі қарай лақтыру (сынақ) санын көбейтсек, онда 402 санына жақынырақ санды алуға болар еді. Мұндай санның ықтимал болуы мүмкін.

Сонымен, ықтималдық дегеніміз ─ белгілі бір анықталған жағдайда қандай да бір кездейсоқ оқиғаның пайда болу дәрежесінің сандық сипаттамасы.

Күнделікті өмірде бұл  ұғымды жиі қолданамыз. Мысалы, бүгін  мүмкін, кешігермін; ол мүмкін, бос емес шығар; жиналыстың болмауы мүмкін секілді.

Ықтималдық  теориясы дегеніміз ─ кездейсоқ жағдайлардың пайда болу заңдылығын зерттейтін математикалық бөлігі.

Оқиғаның ықтималдығы дегеніміз ─ оқиғаның пайда болу мүмкіндігін білдіретін сан.

Нәтиже дегеніміз - кездейсоқ тәжірибені аяқтайтын және бір-бірін өзара жоққа шығаратын нұсқалардың бірі

Кездейсоқ оқиғаның бір  жолғы тәжірибеде пайда болатынын, не пайда болмайтынын алдын ала  білуге мүкін болмағанымен, қайта-қайта  жасалған тәжірибелер барысында, оның пайда болуының белгілі бір заңдылығы байқалады. Мысалы: Жұмыртқаны пісіргенде пайда болатын оқиғаларды қарастырайық:

А= жұмыртқаның пісуі ;

В= жұмыртқаның піспеуі ;

С= піскен жұмырқадан балапанның шығуы 

А, В оқиғалары –  кездейсоқ оқиғалар, яғни айқын оқиғалар, С оқиғасы – жалған оқиға.

1.2 Ықтималдықтың қасиеттері

Анықтама: Егер А және В оқиғалары бір кездейсоқ тәжірибе нәтижесінде қатар орындалса, онда олар үйлесімді оқиғалар деп аталады. 
Анықтама: Егер А және В оқиғалары бір кездейсоқ тәжірибе нәтижесінде қатар орындала алмаса, онда олар үйлесімсіз оқиғалар деп аталады.

Мысал: «Далада жаңбыр жауып тұр», «аспанда бір де бұлт жоқ» - үйлесімсіз оқиғалар.

Мысал: Айдын мен Марат шахмат ойнады. А- «Айдын жеңді», В – «Марат жеңілді» - үйлесімді оқиғалар.

Белгілі жағдайда  қайта-қайта  n рет тәжірибе жасағанда А оқиғасы m рет пайда болса, онда қатынасы А оқиғасы пайда болуының салыстырмалы жиілігі деп аталады. Жоғарыдағы 5 бидай дәнін 5 тәжірибе, яғни m=4 деп ұғамыз. Сонда оқиғаның пайда болу жиілігі   немесе 80% болады.

Сол тұрақты  саны А оқиғасының ықтималдығы деп аталады да Р(А) деп белгіленеді.

А және В оқиғаларының қосындысы деп А немесе В оқиғаларының кем дегенде біреуінің орындалатынын білдіретін  оқиғаны айтады және оны А+В арқылы белгілейді.

Осыдан А+В-ның құрамына А-ға не В-ға тиісті элементтар оқиғалар енеді. Мысалы, ойын сүйегін тастағанда «жұп ұпай түсуі» мен «үштен кем ұпай түсуін» білдіретін оқиғаларды қосу қажет болсын. Онда және В={А12} оқиғаларын қосамыз: А+В={ А2, А4, А6}.

А және В оқиғаларының көбейтіндісі деп А және В оқиғаларының қатар орындалуын білдіретін оқиғаны айтады және оны А*В арқылы белгілейді.  Сонымен, А*В-ның құрамына А-ға және В-ға да тиісті элементар оқиғалар енеді. Мысалы, және В={А12} оқиғалары үшін А*В={ А2} болады.

А және В оқиғаларының айырмасы деп тек А ғана орындалып, В-ның орындалмайтынын білдіретін оқиғаны айтады және оны А-В арқылы белгілейді. Осыдан А-В  құрамына тек А-ға ғана енетін және В-ға тиісті емес элементар оқиғалар енеді. Мысалы,  және  В={А12} оқиғалары үшін А-В={ А2, А4, А6} теңдіктері орындалады.

Егер А1, А2,...Ап элементар оқиғалары үшін А12+...+Ап=U және Ai*Aj =Ø (i≠j) шарттары орындалса, онда бұл оқиғаларды элементар оқиғалардың толық тобы (группасы) деп аталады. Мысалы, ойын сүйегін тастағанда А12, А3, А4, А5, А6  элементар оқиғалары толық топ құрайды. Шынында да, ойын сүйегін тастағанда алты ұпайдың бірі түсері ақиқат, яғни А12+ А3+ А4+ А5+ А6=U қосындысы- ақиқат оқиға. Сонымен қатар, бір тастағанда екі түрлі ұпай түсуі мүмкін емес, яғни Ai*Aj =Ø (i≠j)- жалған оқиға.

Егер В оқиғасы орындалған сайын А оқиғасы да орындалып отырса, онда А-ны В оқиғасының салдары деп атайды және оны былай белгілейді: В А. Мысалы, және С={ А2, А4} болса, онда А оқиғасы- С-ның салдары. Өзара кері А және оқиғалары үшін Ø және U теңдіктері орындалады.

Анықтама (жиындар  үшін): А және В жиындарының элементтерінің түгел жиынтығынан тұратын С жиыны осы екі жиынның бірігуі (кейде қосындысы) деп аталады.

Анықтама (оқиғалар үшін): А және В оқиғаларының ең болмағанда біреуі орындалғанда орындалатын С оқиғасы олардың бірігуі деп аталады.

Кездейсоқ оқиғаларды жиындарға  қолданылады:


 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 ─ Сурет Эйлер-Венн диаграммаларымен бейнелеген қолайлы.

 

 

 

Сонымен бірге, әрбір А және В оқиғалары үшін:

1) ;

2) теңдіктері орындалады. 

Дәлелдеу. 1)  Айталық, болсын.

Онда . Осыдан және оқиғалары бірдей элементар оқиғалардан құралғанын көреміз, яғни .

2) Осы сияқты дәлелденеді:

1-мысалы: Үш атқыштың біріншісінің нысанаға тигізуін А оқиғасы, екіншісінің тигізуін В оқиғасы және үшіншісінің тигізуін С оқиғасы деп алып: 1)А+В; 2)АВС; 3)АВ+АС+ВС өрнектерімен анықталатын оқиғалардың мағынасын ашып көрсетейік.

Шешуі:1) Нысанаға бірінші немесе екінші атқыш тигізді; 2) Нысанға бірінші және екінші атқыштар тигізіп, үшінші мүлт кетті; 3) Кем дегенде екі атқыш нысанаға тигізді.

2-мысал: Алдыңғы мысал шартында нысанаға: 1) тек бірінші атқыш тигізді; 2) тек екі атқыш қана тигізді; 3) атқыштардың ешқайсысы тигізе алмады деген оқиғаларды А,В және С арқылы өрнектеу керек.

Шешуі: 1) Нысанаға тек бірінші атқыш тигізіп, қалған екеуі мүлт кеткен. Онда А, В және С оқиғалары орындалды. Сондықтан оқиғаларды көбейту ережесі бойынша бұл оқиға   арқылы өрнектеледі.

2) Бұл жағдайда нысанға 2 атқыш  тигізіп, үшінші міндетті түрде  тигізбеуі қажет, яғни  немесе немесе оқиғаларының біреуі орындалуы керек. Сондықтан бізге қажет оқиға қосындысымен өрнектеледі.

3) Атқыштардың біреуі де нысанаға  тигізе алмаса, онда  оқиғалары қатар орындалады, яғни оқиғасы орындалады.

1.3 Комбинаторика және ықтималдықты есептеу

Іс жүзінде адамға заттардың өзара орналасуының барлық мүмкін жағдайларын есептеуге немесе қандай да бір іс-әрекеттің барлық мүмкін нәтижелерін және оны орындауға қажетті барлық мүмкін тәсілдер санын есептеуге тура келеді. Мысалы, әр түрлі 5 кітапты екі оқушыға неше түрлі тәсілмен үлестіріп беруге болады? Сондықтан мұндай есептерді комбинаторикалық есептер деп атайды. Ал комбинаторикалық есептерді шешуді үйрететін математика саласын комбинаторика деп атайды. Комбинаторика сөзі латынның “combino” – біріктіремін дегенді білдіреді. Шыныменде кез келген комбинацияны әртүрлі әлементтерді бір-бірімен біріктіру арқылы аламыз. Комбинаторикада әр комбинацияға өз атын береді. Комбинаторика есептерін шешуде қолданатын өзіндік заңдылықтар мен формулалар бар.

Комбинаторикалық формулаларды қолдану кездейсоқ оқиғалардың  ықтималдықтарын есептеуді біршама  жеңілдетеді. Мысалдар қарастырайық.

1-мысал: 9 қабатты мекеменің 5-қабатынан лифтке 3 қызметкер мініп, жоғары  көтерілді. Бұлардың әрқайсысы лифттен әртүрлі қабаттарда шығуы ықтималдылығы қандай?

Шешуі: Мұнда -ке  тең, себебі жолаушылардың түсуі мүмкін 4 қабатты (4 элементтен тұратын жиынды) үш адамға тағайындап беру қажет (яғни 4-тен 3 бойынша қайталанбалы орналастырулар). Ал -ке тең, себебі 4 элементті (қабатты) 3 орынға (қызметкерлерге) қайталанбайтындай етіп орналастыру қажет. Сонымен,

2-мысал: Бес карточкаға бір-бірден а,й,қ,с,ы әріптері жазылып, келесі бетімен аударылып, мұқият араластырылды. Кездейсоқ бір-бір карточкадан алып, бір қатарға тізіп шыққанда «қайыс» сөзінің шығуы ықтималдығы қандай?

Шешуі: Барлық мүмкін нәтижелер саны 5 элементтен тұратын жиынның алмастырулары санына тең:

Ал бізге қолайлы  нәтижелер саны біреу ғана m=1. Сонда 

3-мысалы: Сынаптарға ағылшын тілін оқитын бір топта 12 оқушы бар. Олардың туған күндері әр түрлі айларға түсуі ықтималдығын табу керек.

Информация о работе Кездейсоқ оқиғалар