Автор работы: Пользователь скрыл имя, 29 Марта 2014 в 04:49, курсовая работа
В настоящее время вновь особую актуальность приобретают вопросы, связанные с воспитанием личности школьника в процессе обучения. Одной из причин, породивших данную тенденцию, является низкий уровень духовной культуры современного учащегося, неотъемлемой частью которой является её эстетическая составляющая. Этой же причиной обусловлена направленность современного математического образования на гуманитаризацию, в связи с чем обучение геометрии приобрело ряд нетрадиционных функций, одной из которых является эстетическая функция, призванная обеспечить процесс эстетического воспитания посредством раскрытия при обучении геометрии.
Кроме того, как отмечают многие математики (Ж. Адамар, Г.Биркгоф, Г.Вейль, А.Пуанкаре и др.) и специалисты в области математического образования (В.Г. Болтянский, В.А. Крутецкий и др.), видение красоты геометрии определяет не только эстетико-ценностную ориентацию личности, но и способствует развитию интереса к ней, а также оказывает весьма значительную помощь в поиске решений геометрических задач, освоении теорий, тем самым заметно влияя на математическую подготовку учащихся.
Пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона якобы свидетельствуют, что египетские мастера пользовались соотношениями золотого сечения при их создании.
Согласно Ле Корбюзье, в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют золотому сечению. В фасаде древнегреческого храма Парфенона также присутствуют золотые пропорции. В циркуле из древнеримского города Помпеи (музей в Неаполе) также заложены пропорции золотого деления, и т. д. и т. п.
Результаты исследования золотого сечения в музыке впервые изложены в докладе Эмилия Розенова (1903) и позднее развиты в его статье «Закон золотого сечения в поэзии и музыке» (1925). Розенов показал действие данной пропорции в музыкальных формах эпохи Барокко и классицизма на примере произведений Баха, Моцарта, Бетховена.
При обсуждении оптимальных соотношений сторон прямоугольников (размеры листов бумаги A0 и кратные, размеры фотопластинок (6:9, 9:12) или кадров фотоплёнки (часто 2:3), размеры кино- и телевизионных экранов - например, 3:4 или 9:16) были испытаны самые разные варианты. Оказалось, что большинство людей не воспринимает золотое сечение как оптимальное и считает его пропорции «слишком вытянутыми».
2.Золотой ряд Фибоначчи
«Золотая середина» - она и есть золотое сечение‚ поскольку обладает динамической потенцией развёртывания. В природе широко распространена изящная кривая - логарифмическая спираль (в раковинах моллюсков, побегах растений и прочих формах), тесно связанная с золотой пропорцией.
Археологи нашли «пропорциональные циркули», которыми пользовались старинные зодчие‚ - оказывается, калькулятор для вычисления пропорций был вовсе не нужен: устройство циркулей таково, что их ножки фиксировались как раз на величину отрезков 1:, 1: и т.д. К аналогичным результатам приводило и использование «живых мер» длины - локтей, саженей и прочих, когда метром служили части реального человеческого тела.
Кеплером впервые было записано рекуррентное выражение для ряда Фибоначчи - последовательности целых чисел, происхождение которой связывают с именем купца по профессии, Леонардо из Пизы по прозвищу Фибоначчи («сын доброй природы»). Говорят, что Леонардо Пизанский пришёл к этому ряду, решая задачу о разведении кроликов. В начале тринадцатого века знание математики было редкостью, и Фибоначчи опубликовал свои открытия в трактате Liber de abacci («Книга об абаке», 1202 г.).
Его задача формулировалась так: сколько пар кроликов мы получим через определённое число месяцев, если в начале имеем 1 пару новорождённых кроликов, размножаться кролики начинают с возраста двух месяцев‚ и приносят в среднем 1 пару приплода в месяц. Решение таково: в первый месяц 1 пара, во второй - всё ещё одна пара, в третий 1+1=2 пары, в четвёртый (1+1)+1=3 пары, в пятый - (1+1)+(1+1)+1 = 5 пар и т.д. В результате получается ряд, где каждое последующее число есть сумма двух предыдущих:
, 1, 2, 3, 5, 8, 13, 21, 34… , (2)
это и есть знаменитый натуральный Золотой ряд Фибоначчи.
Если два предыдущих члена последовательности обозначены и , то следующий её член
= + (3).
Трудно сказать, правда ли‚ что кролики размножаются подобным образом: мы думаем, задачу про разведение кроликов Леонардо Пизанский изобрёл нарочно с той целью, чтобы продемонстрировать нам этот замечательный ряд чисел. Пришлось ждать до конца шестнадцатого века‚ пока Иоганн Кеплер не привёл строгое доказательство, что отношение соседних членов этой прогрессии при её возрастании сходится к значению золотого сечения ?. Сходится ряд довольно быстро:
если 1:1=1, 2:1=2, 3:2=1.5, то уже 13:8=1.625,
а восемнадцатый член имеет уже шесть десятичных знаков, совпадающих со значением .
Доказательство может быть построено на главном свойстве золотого сечения, которое называется аддитивным: умножение ? на ? эквивалентно прибавлению единицы, возведение в куб - прибавлению единицы уже к двум ?, и т.д. Это вытекает из основного выражения 1 + 1/ ? = ?:
= ? + 1,
= ? (? + 1) = + ? = 2? + 1,
= ? (2? + 1) = 2 + ? = 3? + 2,
= ? (3? + 2) = 3+ 2? = 5? + 3 и т.д.,
т.е. = ? +, где - число ряда Фибоначчи.
Размножающиеся кролики вновь всплыли в ХХ веке, через семь столетий после доброго Леонардо. Американскому математику Натану Альтшулеру в 1917 г. удалось получить выражение для ?, где оно возникает как предел бесконечного квадратного корня:
Если мы изобразим на клетчатой бумаге изобразить единичный квадрат как соответствующий первому члену =1 ряда чисел Фибоначчи, на его нижней стороне другой такой же квадрат =1, на их общей левой стороне 1+1 квадрат 2х2, отвечающей третьему члену ряда , затем на стороне прямоугольника 2+1=3 квадрат 3x3, отвечающий четвёртому члену и т.д., то получим геометрический аналог последовательности Фибоначчи на плоскости из квадратов и прямоугольников, пропорции которых быстро становятся «золотыми»:
Поскольку каждый последующий «золотой» квадрат со стороной строится на стороне прямоугольника как сумме сторон двух предшествующих по порядку квадратов и - и осуществляя при этом поворот на четверть окружности (?/2) - то ими отмечены четыре (а также восемь) направлений на плоскости. При том заметим, что каждый квадрат (кроме первых четырёх) соприкасается с шестью другими (3+1+1+1), сам являясь седьмым. Это даёт нам параллель шести основным интервалам диатонической гаммы и шести её ступеням с седьмой (единичной) ступенью, а также паттерну тетрактиды (1:2:3:4), образующему фрактальное множество пифагорейских гармонических чисел на промежутке октавы.
3.Симметрия
Симметрия является эквивалентом уравновешенности и гармонии и используется во многих областях науки и искусства. Принципы симметрии являются инструментом для нахождения новых законов природы. Например, распространение электромагнитных волн симметрично во взаимоперпендикулярных плоскостях. Структура молекулы также имеет симметричное строение.
Молекула ДНК - это двуцепочечный высокомолекулярный полимер, мономером которого являются нуклеотиды. Молекулы ДНК имеют структуру двойной спирали, которая построена по принципу комплементарности. А, исследуя симметрии биоструктур на молекулярном и надмолекулярном уровнях, можно заранее определить возможные варианты симметрии в биообъектах, четко описать внешнюю форму и внутреннее строение любых организмов.
Симметрия конуса свойственна растениям. Например, цветок считается симметричным, если каждый околоцветник состоит из равного числа частей. Цветки, имеющие парные части, считаются цветками с двойной симметрией.
Симметрия у животных означает соответствие в размерах, форме и очертаниях, а также относительное расположение частей тела, которые находятся на противоположных сторонах разделяющей линии.
По принципу двусторонней симметрии построено тело человека. Мозг человека разделен на две половины - два полушария, плотно прилегающие друг к другу, и каждое полушарие представляет собой почти точное зеркальное отображение другого, Однако, физическая симметрия тела и мозга не означает, что правая сторона и левая равноценны во всех отношениях. Очень немногие люди одинаково владеют обеими руками. Например, женщины более склонны к леворукости, чем мужчины. У женщин хорошо развита интуиция, за которую отвечает правое полушарие, но слабее пространственная функция, логика, воля, самоконтроль. Среди мужчин имеется много композиторов, художников, что говорит о развитии левого полушария.
Идеи симметрии часто встречаются в живописи, скульптуре, музыке и поэзии. Зачастую именно язык симметрии оказывается особенно пригодным для обсуждения произведений искусства, даже если последние отличаются отклонениями от симметрии или их создатели стремились умышленно ее избежать.
3.1 Зеркальная симметрия
Красота тесно связана с симметрией. Об этом говорит, например, в своей книге о пропорциях Поликлет - ваятель, скульптуры которого служили предметом восхищения древних за их гармоническое совершенство, и Дюрер следует за ним при установлении канона пропорций человеческого тела. В этом смысле идея симметрии никоим образом не ограничивается пространственными объектами; ее синоним «гармония» в гораздо большей степени указывает на акустические и музыкальные приложения идеи симметрии, чем на геометрические. Образ весов является естественным связующим звеном, которое подводит нас ко второму смыслу, в котором слово симметрия употребляется в наше время: зеркальная симметрия, симметрия левого и правого, столь заметная в строении высших животных и, в особенности, человеческого тела. Здесь зеркальная симметрия - строго геометрическое и, в отличие от рассматривавшегося до сих пор расплывчатого представления о симметрии, вполне точное понятие. Тело (пространственный образ) симметрично относительно данной плоскости Е, если оно переходит в себя при отражении от плоскости Е. Возьмем какую-нибудь прямую l, перпендикулярную плоскости Е, и на этой прямой - произвольную точку р (рис. 1). Тогда существует одна и только одна точка р' на прямой l, находящаяся на таком же расстоянии от плоскости Е, что и точка р, но по другую сторону от этой плоскости. Точка р' совпадает с точкой р только в том случае, если она принадлежит плоскости Е.
Отражение от плоскости Е является отображением S: р?р' пространства на себя, переводящим произвольную точку р в ее зеркальный образ р' относительно Е. Отображение определено, если установлено правило, по которому каждой точке р ставится в соответствие ее образ
Из всех древних народов строгая зеркальная, или геральдическа, симметрия была, по-видимому, особенно излюблена шумерами. В этом отношении типичным является рисунок на известной серебряной вазе царя Энтемены, правившего в городе Лагаше около 2700 г. до н. э.; на рисунке изображен орел с львиной головой и распростертыми крыльями; в когтях у него с каждой стороны по оленю; на оленей в свою очередь нападают львы.
Перенесение точной симметрии, присущей орлу, на других животных, заставляло, очевидно, удваивать изображения. Несколько позже орла стали изображать с двумя головами, смотрящими в разные стороны, и, таким образом, формальный признак симметрии полностью восторжествовал над принципом подражания природе.
Этот геральдический мотив можно затем обнаружить в Персии, в Сирии, позднее в Византии, а всякий живший до первой мировой войны помнит двуглавых орлов на гербах царской России и Австро-Венгерской монархии.
Низшие формы животных - мелкие организмы, взвешенные в воде,- имеют более или менее шарообразную форму. Для форм, живущих на дне океана, направление силы тяжести является важным фактором. Для животных, обладающих способностью самостоятельно передвигаться в воде, в воздухе или по земле, решающее влияние оказывает как сила тяжести, так и то направление (от заднего к переднему концу тела), в котором движется животное.
После установления передне-задней, спинно-брюшной, а тем самым и лево-правой осей произвольным остается лишь различие между правым и левым, и на этом этапе никаких более высоких типов симметрии, чем зеркальная, ожидать не приходится. Действие факторов филогенетической эволюции, стремящихся вызвать в организме наследственное различие между левым и правым, тормозится, вероятно, за счет тех преимуществ, которые животное извлекает из зеркально-симметричного расположения своих органов движения - ресничек или мышц и конечностей: в случае асимметричного их развития естественно получилось бы винтовое, а не прямолинейное движение. Это может нам объяснить, почему наши конечности подчиняются закону симметрии более строго, чем внутренние органы. В «Пире» Платона Аристофан поведал иную историю о том, как произошел переход от сферической симметрии к зеркальной. Вначале, говорит он, человек был круглым, его спина и бока образовывали круг. Чтобы смирить гордыню людей и лишить их могущества, Зевс рассек их пополам, а Аполлон повернул их лица и детородные члены. При этом Зевс пригрозил: «А если они и после того окажутся дерзкими и не захотят жить смирно - я опять разрежу их надвое, чтобы они ходили на одной ноге».
Наиболее поразительным примером симметрии в неорганическом мире являются кристаллы. Газообразное и кристаллическое состояния являются двумя четко разграниченными состояниями вещества, которые физике удается сравнительно легко объяснить. Состояния, промежуточные между этими двумя крайностями,- такие как жидкое и пластичное - труднее поддаются теории.
В газообразном состоянии молекулы свободно движутся в пространстве, имея независимые случайные скорости и положения. В кристаллическом состоянии атомы колеблются около положений равновесия так, как если бы они были привязаны к ним упругими нитями. Эти положения образуют стационарную правильную конфигурацию в пространстве.
.2 Орнаментальная симметрия
Если вы свалите в кучу пушечные ядра или круглые бусинки, то они естественным образом примут расположение, представляющее собой трехмерный аналог шестиугольной конфигурации. В случае двух измерений задача состоит в том, чтобы уложить на плоскости по возможности плотно равные круги. Начнем с горизонтального ряда из кругов, касающихся друг друга. Если вы сбросили сверху еще один круг на этот ряд, то он займет место между какими-то двумя соседними кругами нижнего ряда и центры этих трех кругов составят равносторонний треугольник. Таким образом получится второй горизонтальный ряд, состоящий из кругов, лежащих между кругами первого ряда, и т. д. (рис. 49).
Между кругами останутся небольшие промежутки. Касательные к кругу в точках, где он соприкасается с шестью окружающими его кругами, образуют правильный шестиугольник, описанный вокруг этого круга, и если вы замените каждый из кругов таким шестиугольником, то получите правильную конфигурацию из шестиугольников, заполняющую всю плоскость.
В соответствии с законами капиллярности мыльная пленка, обтягивающая данный контур из тонкой проволоки, принимает форму минимальной поверхности, т. е. поверхности с площадью, меньшей площади любой другой поверхности, ограниченной тем же контуром.
Мыльный пузырь, если вдуть в него некоторое количество воздуха, примет сферическую форму, так как сфера ограничивает данный объем при минимуме поверхности. Поэтому уже не кажется удивительным то, что пена, состоящая из двумерных пузырьков равной площади, образует шестиугольный узор,- ведь среди всех разбиений плоскости на части равной площади шестиугольный узор обладает тем свойством, что сеть, состоящая из его контуров, имеет минимум длины. При этом предполагается, что задача сведена к двум измерениям, так как мы рассматриваем горизонтальный слой пузырьков, например, между двумя горизонтальными стеклянными пластинками. Если пузырчатая пена имеет границу (слой эпидермы, как сказал бы биолог), то мы наблюдаем, что эта граница состоит из дуг окружностей, образующих углы в 120° со стенкой ближайшей клетки и с соседней дугой,- как это и требуется законом минимальной длины.