Автор работы: Пользователь скрыл имя, 11 Апреля 2013 в 14:40, реферат
Переменная z называется функцией двух независимых переменных x и y, если некоторым парам значении x и y по какому – либо правилу или закону ставится в соответствие определенное значение z.
Множество G пар значений x и y, которые могут принимать переменные x и y, называется областью определения функции, а множество всех значений, принимаемых z в области определения, - областью значений функции z. Переменные x и называются аргументами функции.
Пара чисел x и y определяет положение точки M на плоскости xOy с координатами x и y. Поэтому функцию двух переменных можно рассматривать либо как функцию двух переменных можно рассматривать как функцию точки M , либо как скалярную функцию векторного аргумента .
Функции нескольких переменных.
Определение функции нескольких переменных
Предел функции двух переменных
Непрерывность функции двух переменных
Частные производные
Частные производные
Полный дифференциал
Производная и дифференциал сложной функции
Неявные функции и их дифференцирования
Частные производные и дифференциалы высших порядков
Частные производные высших порядков
Признак полного дифференцирования
Дифференциалы высших порядков
Список литературы
ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ РОССИЙСКОЙ ФЕДЕРАЦИИ
ЛИПЕЦКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ
ФАКУЛЬТЕТ ЭКОНОМИКИ И ИНФОРМАТИКИ
КАФЕДРА МАТЕМЕТИЧЕСКИХ МЕТОДОВ В ЭКОНОМИКЕ
РЕФЕРАТ
НА ТЕМУ:
“ЧАСТНЫЕ ПРОИЗВОДНЫЕ”
ВЫПОЛНИЛ:
СТУДЕНТ II КУРСА ГР. И-04-2
ПИВКОВ В.А.
ПРОВЕРИЛ:
ВОРОНОВА Е.А.
г. Липецк - 2006
Содержание.
Список литературы
Переменная z называется функцией двух независимых переменных x и y, если некоторым парам значении x и y по какому – либо правилу или закону ставится в соответствие определенное значение z.
Множество G пар значений x и y, которые могут принимать переменные x и y, называется областью определения функции, а множество всех значений, принимаемых z в области определения, - областью значений функции z. Переменные x и называются аргументами функции.
Пара чисел x и y определяет положение точки M на плоскости xOy с координатами x и y. Поэтому функцию двух переменных можно рассматривать либо как функцию двух переменных можно рассматривать как функцию точки M , либо как скалярную функцию векторного аргумента .
Каждой тройке (x; y; z) в пространстве Oxyz соответствует точка M(x; y; z). Совершенно аналогично случаю двух переменных можно дать определение функции трех переменных . Областью определения функции трех переменных будет все пространство или его часть.
Аналогично можно дать определение функции четырех и более переменных.
Множество точек M(x; y), координаты x и y которых удовлетворяют неравенству или называется δ-окрестность точки .
Определение. Число A называет пределом функции при стремлении точки M к точке , если для любого ε>0 существует такое δ>0, что для всех точек M из области определения этой функции, удовлетворяющих условию имеет место неравенство . Обозначают это так: или
Функция называется бесконечно малой при если
Пусть точка принадлежит области определения . Определение. Функция называется непрерывной в точке если
или причем точка M стремится к M0 произвольным образом, оставаясь в области определения функции.
Обозначим , . Полным приращением при переходе от точки , к точке M называется разность значении функции в этой точке , т.е.
2.1 Частные производные.
Частной производной функции нескольких переменных по какой-нибудь переменной в рассматриваемой точке называется обычная производная по этой переменной, считая другие переменные фиксированными (постоянными). Например, для функции двух переменных в точке частные производные определяются так:
,
,
если эти пределы существуют. Величина называется частным приращением функции z в точке по аргументу . Используются и другие обозначения частных производных:
, , , ,
, , , .
Символы , , , как дроби трактовать нельзя (в этом отличие от случая одной переменной).
Из определения следует геометрический смысл частной производной функции двух переменных: частная производная - угловой коэффициент касательной к линии пересечения поверхности и плоскости в соответствующей точке.
Пользуясь понятием скорости изменения переменной, можно сказать, что частная производная есть скорость изменения функции относительно при постоянном .
Из определения частных производных следует, что правила вычисления их остаются теми же, что для функций одной переменной, и только требуется помнить, по какой переменной ищется производная.
Пример 1. Если , то , .
Пример 2. Если , то , . Величина называется изотермическим коэффициентом упругости идеального газа.
Аналогично
определяются и обозначаются
частные производные функции
трех и большего числа
.
Если приращение
(1) можно представить в виде
,
Где Аи В не зависят от и , а и стремятся к нулю при стремлении к нулю и , то функция называется дифференцируемой в точке , а линейная часть приращения функции (т.е. та часть , которая зависит от и линейно) называется полным дифференциалом (или просто дифференциалом) этой функции в точке и обозначается символом :
Из определения дифференцируемости функции следует, что если данная функция дифференцируема в точке , то она в этой точке непрерывна.
Действительно, если в точке функция дифференцируема, то для этой точки представимо в форме (2), откуда следует, что
а это и означает, что в точке функция непрерывна.
Из дифференцируемости функции в данной точке следует существование ее частных производных в этой точке (необходимое условие дифференцируемости).
В самом деле, пусть функция в точке дифференцируема. Тогда имеет место соотношение (2). Полагая в нем , имеем:
Деля на и переходя к пределу при , получаем:
.
Это означает, что в точке
существует частная производная функции
по
и
.
Аналогично доказывается, что в точке существует частная производная
Используя формулы (4) и (5), можно переписать выражение (3) в виде
Если положить , то , т.е. . Аналогично, полагая , получим . Значит, дифференциалы независимых переменных совпадают с приращениями этих переменных, и можно записать дифференциал (3) в следующем виде: .
Теорема (достаточное условие дифференцируемости). Если функция имеет частные производные в некоторой окрестности точки и эти производные непрерывны в самой точке , то эта функция дифференцируема в точке .
Доказательство. Дадим переменным и столь малые приращения и , чтобы точка не вышла за пределы указанной окрестности точки . Полное приращение можно записать в виде .
Каждая из этих разностей представляет частное приращение функции. Преобразует каждую из этих разностей по формуле Лагранжа. Получим:
(6)
Так как производные и непрерывны в точке , то
,
Отсюда
, , где и - бесконечно малые при , . Подставляя эти значения в равенство (6), находим:
,
а это и означает, что функция дифференцируема в точке .
2.3 Производные и дифференциал сложной функции.
Пусть , где , . Тогда в конечном итоге z будет функцией одной переменной t. Предположим, что , непрерывны и , существуют. Найдем . Дадим переменной t приращение . Тогда x, y, а следовательно, и z получат свои приращения , и . В силу достаточного условия дифференцируемости
,
откуда
.
Устремим теперь к нулю. Тогда и будут стремиться к нулю, так как функции x и y непрерывны (мы предположили существование производных и ), а потому и будут стремиться к нулю. В пределе получим:
,
или, короче,
.
Формула (7) называется формулой производной сложной функции.
Пример 1. Пусть , , . По формуле (7) имеем:
.
Предположим, в частности, что роль независимой переменной играет, т.е. рассмотрим функцию , где . Согласно формуле (7) будем иметь:
,
так как . В формуле (8) - частная производная по первому аргументу функции двух переменных , а - обычная производная сложной функции одной переменной x: . Последнюю производную будем называть полной производной функции. В случае, когда , где , аналогично получает:
( - частная производная по второму аргументу функции , - полная производная функции одной переменной y: ).
Пусть теперь , ( здесь предполагается существование первых производных функций , по и ). В этом случае z будет функцией двух независимых переменных и . Следовательно, для этого случая формулу (7) нужно переписать в виде
.
Аналогично
.