Докозательство

Автор работы: Пользователь скрыл имя, 01 Апреля 2014 в 20:35, контрольная работа

Краткое описание

Логические операции - такие, как определение, классификация, доказательство, опровержение - применяются каждым человеком в его мыслительной деятельности. Но применяются неосознанно и нередко с погрешностями, без отчетливого представления о всей глубине и сложности тех мыслительных действий, с которыми связан каждый, даже самый элементарный акт мышления.

Содержание

Введение.........................................................................................................................................3
1. Общая характеристика..............................................................................................................5
2. Структура доказательства.........................................................................................................8
3. Прямые и косвенные доказательства ....................................................................................15
Заключение...................................................................................................................................21
Список используемой литературы................................................

Прикрепленные файлы: 1 файл

Логика.doc

— 144.00 Кб (Скачать документ)

Если все студенты философского факультета сдают экзамен по логике, то и мой друг сдает экзамен по логике.

Мой друг - студент философского факультета.

Мой друг сдает экзамен по логике.

Здесь, в первой посылке, в условном суждении сформулировано общее положение, во второй - в категорическом суждении - установлено, что основание условного суждения истинно. Согласно логической норме: при истинности основания условного суждения, следствие его будет обязательно истинно, - мы и получаем в качестве вывода наш тезис.

Косвенное – доказательство, при котором истинность тезиса обосновывается посредством опровержения истинности противоречащего положения. Наиболее распространенными видами косвенного доказательства являются апагогическое и разделительное доказательства [8, с. 68].

В косвенном докузательстве истинность тезиса обосновывается опосредованно, путем обоснования ложности антитезиса, т.е. положения (суждения), противоречащего тезису; либо путем исключения всех членов разделительного суждения по разделительно-категорическому силлогизму, кроме нашего тезиса, являющегося одним из членов этого разделительного суждения [5, с. 140]. В том и в другом случае необходимо опираться на требования логики к этим формам мысли, на законы и правила логики, строго соблюдать их. Так, при формулировке антитезиса надо следить за тем, чтобы он был действительно противоречащим тезису, а не противоположным ему, потому что противоречие не допускает одновременной ни истинности, ни ложности этих суждений (положений), а противоположность - допускает их одновременную ложность. При противоречии, обоснованная истинность антитезиса, выступает основанием ложности тезиса, а обоснованная ложность антитезиса, наоборот, косвенно обосновывает истинность тезиса. Обоснование же ложности противоположного тезису положения, не гарантирует, не обосновывает истинность самого тезиса, так как противоположные суждения могут быть и одновременно ложными. Косвенными доказательствами обычно пользуются тогда, когда нет аргументов для прямого доказательства, когда невозможно по разным причинам обосновать тезис прямо.

Общеизвестными образцами косвенного доказательства от противного, или путем приведения к абсурду, являются некоторые доказательства в геометрии. Например, не имея аргументов для прямого обоснования тезиса о том, что если две прямые параллельны третьей, то они параллельны и между собой, допускаем противное (постулат), а именно, что эти прямые не параллельны между собой. Раз так, значит они где-то пересекутся между собой и тем самым будут иметь общую точку. В этом случае получается, что через точку, лежащую вне третьей прямой, проходят две прямые, параллельные ей. А это противоречит ранее обоснованному положению, что через точку, лежащую вне прямой, можно провести только одну прямую, параллельную данной. Значит, наше допущение неверно, оно приводит к абсурду, к противоречию с уже известными истинами (или с принятыми аксиомами). В обобщенном виде это доказательство можно представить так: необходимо обосновать тезис В. Прямых аргументов для этого у нас нет. Допускаем, что истинно положение не-В. То есть антитезис. Выводим из этого допущения следствия, например, не-С, не-Д. Когда в процессе сопоставления их с нашими основаниями (аксиомами), или с уже доказанными положениями, например, С, Д, обнаруживается несоответствие, противоречие между ними, то приходится с необходимостью признать ложность нашего допущения - ложность антитезиса. А этим, косвенно, доказывается (обосновывается) истинность тезиса.

Используются косвенные доказательства и в логике. Так, не имея прямых аргументов для обоснования тезиса: меньшая посылка в первой фигуре простого категорического силлогизма должна быть утвердительной, - допускаем противное, т.е. что она - отрицательная. Дальнейшее рассуждение показывает, что при отрицательности меньшей посылки, большая должна быть утвердительной, поскольку из двух отрицательных посылок вывод не следует. При отрицательности одной из посылок - вывод всегда отрицательный. В отрицательном выводе предикат должен быть распределен, поскольку во всех отрицательных суждениях предикат всегда распределен. Предикатом вывода в нашем случае есть понятие, являющееся предикатом большей утвердительной посылки. В утвердительных суждениях, известно, предикат как правило нераспределен. Вот тут-то и обнаруживается само противоречие - получается, что одно и то же понятие, не распределенное в посылке, как предикат утвердительного суждения, оказывается необходимо распределенным в заключении, как предикат отрицательного вывода. Логика своим требованием «термин, не распределенный в посылке, не может быть распределен в заключении» подобного не допускает. Таким образом, косвенно обосновывается тезис: меньшая посылка по первой фигуре должна быть суждением утвердительным.

Другой вид косвенного доказательства - разделительное доказательство. Оно обосновывает тезис путем исключения всех членов разделительного суждения, кроме тезиса. Ясно, что данный вид доказательства будет осуществляться по разделительно-категорическому или условно-разделительному силлогизмам. Например, возьмем тезис «S есть Р», или одним символом - В. Равносильными тезису являются положения «S есть P1», т.е. С; «S есть Р2», то есть Д и так далее. В сокращенной записи это будет формула ВvСvД. При этом, В, С, Д должны полностью исчерпывать предметную область (наше деление должно быть соразмерным, полным), а члены деления должны исключать друг друга.  Устанавливаем в каждом отдельном случае, что С ложно, что в действительности имеет место не-С. То же самое и относительно Д. И когда таким образом обоснуем ложность всех членов разделительного суждения, то есть исключим члены деления, кроме нашего тезиса, только тогда можно с уверенностью считать, что тезис В косвенно обоснован. При этом, и это немаловажно, необходимо соблюсти все требования логики к разделительному суждению, к процессу деления объема данной предметной области. А главные требования логики к делению заключаются в том, чтобы расчленение предметной области совершалось по одному четкому признаку (основанию деления), чтобы деление при этом было последовательным (без скачков, пропусков), полным, соразмерным, чтобы члены деления исключали друг друга.

Доказательство «от противного» осуществляется посредством применения непрямого правила рассуждения [6, с. 107]:

                                                                                                       (1)

Для доказательства истинности «А» при наличии множества аргументов «Г» предполагается ложность этого высказывания, т. е. истинность«┐А», и показывается, что из «Г» и этого предположения выводимо противоречие«В» и«┐В». Указанное правило позволяет заключить при этом, что из аргументов «Г» выводимо «А».

Для доказательства истинности«┐А» или так называемого «непрямого опровержения» используется несколько иная схема [6, с. 107]:

                                                                                                          (2)

Опровержение такого рода характеризуется как опровержение путем «сведения к абсурду». Однако следует отметить, что, по существу, в любом доказательстве «от противного» мы имеем в качестве его составной части указанную выше форму опровержения путем «сведения к абсурду».

Доказательство  посредством  исключения  альтернатив состоит в том, что, например, для доказательства некоторого высказывания используется в качестве аргумента дизъюнктивное высказывание, т. е. перечисление всех альтернатив.

Обобщенная форма подобных доказательств такова [6, с. 107]:

                                                                   (3)

гдеm≥2, «Am» – тезис доказательства.

Из схемы видно, что условием истинности дизъюнктивного аргумента «A1, …, Am» является перечисление именно всех возможностей, среди которых тезис и все его возможные альтернативы.

Данное  правило  рассуждения,  лежащее  в  основе  косвенного (непрямого) доказательства посредством исключения альтернатив,  является  обобщением  дедуктивной  формы  разделительно-категорического силлогизма, а именно отрицающее - утверждающего модуса данного силлогизма [6, с. 107]:

                                                                                                                 (4)

Основное отличие косвенных доказательств от прямых состоит в том, что в прямом доказательстве в качестве посылок вывода используются только аргументы, в то время как косвенное доказательство использует также и вспомогательные допущения.

Из действий с доказательством, или над доказательством, как определенной формой мысли, определенной мыслительной структурой, наиболее известно всего лишь одно - отрицание его. Отрицание доказательства называется опровержением. Опровержение - это обоснование ложности или несостоятельности того или иного элемента доказательства, а иногда и доказательства в целом [5, с. 140]. Многие свойства опровержения определяются свойствами доказательства, потому что опровержение структурно мало чем отличается от доказательства. Опровержение может быть направлено против тезиса доказательства, против аргументов его, против демонстрации. Опровергая тезис, опровержение необходимо формулирует антитезис; опровергая аргументы - выдвигает другие; опровергая демонстрацию доказательства - показывает (демонстрирует) своей структурой строгое соблюдение логических связей между своими аргументами и антитезисом.

Обоснование истинности антитезиса можно рассматривать и как доказательство антитезиса, и как опровержение тезиса. Зато обоснование несостоятельности аргументов еще не доказывает ложности самого тезиса, а лишь указывает на ложность или недостаточность приведенных аргументов для обоснования тезиса, лишь отвергает их: вполне возможно, что таких аргументов много, но по разным причинам они в доказательстве не использовались. Таким образом, опровержение аргументов назвать антидоказательством не всегда возможно.

Так же и с опровержением демонстрации. Обосновывая неправильность (нелогичность, ошибочность) связи тезиса с аргументами, или связи между аргументами в доказательстве, мы лишь указываем на нарушение логики, но этим не отрицаем сам тезис, не отрицаем сами аргументы. И то, и другое может оказаться вполне приемлемым, стоит лишь найти более правильные непосредственные или опосредованные связи между ними. Поэтому, не всякое опровержение можно называть опровержением доказательства в целом, точнее, не всякое опровержение отбрасывает доказательство в целом. И это следует иметь в виду при определении опровержения.

Соответственно видам опровержения (опровержение тезиса, опровержение аргументов и опровержение демонстрации) можно указать и способы опровержения, которые используются в них. Так, тезис может быть опровергнут путем доказательства антитезиса и путем выведения следствий из тезиса, противоречащих действительности. Аргументы могут быть опровергнуты как путем обоснования их ложности (аргументы  только кажутся истинными, или некритически принимаются за истинные), так и путем обоснования того, что для доказательства тезиса приведенных аргументов мало. Опровержение можно осуществить и путем обоснования того, что используемые аргументы сами нуждаются в обосновании. Ну и, наконец, опровержение можно осуществить и путем установления того, что источник фактов (оснований, аргументов) для обоснования тезиса является недостоверным, недоброкачественным: фальшивые документы, псевдолетописи, подделанные мемуары и прочее.

Способов опровержения демонстрации, в силу множества самих правил демонстрации, достаточно  много. Опровержением в этом случае будет указание на нарушение любого правила посылок категорического силлогизма при связи их между собой; указание на нарушение связи их с тезисом; указание на нарушение правил фигур категорического силлогизма и их модусов; указание на нарушение правил условного и разделительного силлогизмов и многое другое [5, с. 140].

Подведем итоги:

- по способу доказывания, по типу связи аргументов и тезиса доказательства подразделяются на прямые и косвенные;

- прямое доказательство – это доказательство, при котором тезис логически следует из найденных оснований;

- косвенное доказательство – это доказательство, при котором истинность тезиса обосновывается посредством опровержения истинности противоречащего положения;

- наиболее распространенными видами косвенного доказательства являются апагогическое и разделительное доказательства;

- основное отличие косвенных доказательств от прямых состоит в том, что в прямом доказательстве в качестве посылок вывода используются только аргументы, в то время как косвенное доказательство использует также и вспомогательные допущения.

 

 

 

 

 

 

 

 

Заключение

 

Доказательство – логическая операция по обоснованию истинности суждений с помощью других истинных суждений.

Суждения могут быть непосредственно очевидными, или они могут сделаться очевидными, если мы их сведём к положениям, которые имеют характер непосредственно очевидный. Если мы при помощи такого приема делаем суждения очевидными, то можно сказать, что мы их доказываем. Это приведение к очевидности облекается в силлогистическую форму, так что доказательство может быть определено как выведение какого-либо суждения из других суждений, признанных истинными и очевидными.

Таким образом, доказательство вообще имеет формулу силлогистического умозаключения, но есть существенные пункты отличия между умозаключением и доказательством.

Именно в умозаключении мы не всегда обращаем внимание на то, истинны ли посылки; в доказательстве же истинность посылок является самым главным требованием. Кроме того, доказательство отличается от силлогизма ещё и тем, что в нём доказываемое суждение, соответствующее заключению силлогизма, известно заранее.

Во всяком доказательстве мы различаем три части:

- доказываемое положение, или тезис; это именно то, что должно быть доказано или сделано очевидным;

- основы доказательства, или аргументы; это то, при помощи чего тезис доказывается или делается очевидным;

- форма доказательства, или способ, каким тезис выводится из аргументов.

Тезис доказательства соответствует заключению в силлогизме. Аргументы соответствуют посылкам силлогизма. Форма доказательства есть логическая схема, при помощи которой выводится заключение.

Логика сформулировала определенные правила для каждого элемента структуры доказательства, соблюдение которых гарантирует не только структурную правильность доказательства, но и необходимую истинность обосновываемого тезиса, естественно, при истинности аргументов. Нарушения правил приводят к алогизмам. Сознательное нарушение правил - это софизм, нечаянное, непредумышленное нарушение – паралогизм.

Информация о работе Докозательство