Автор работы: Пользователь скрыл имя, 17 Июня 2014 в 21:49, реферат
Группы липидов отличаются по степени гидрофобности. Фосфолипиды и гликолипиды являются полярными липидами.
Холестерин занимает промежуточное положение между полярными и абсолютно гидрофобными липидами.
Абсолютно гидрофобными являются триглицериды и эфиры холестерина.
Большинство липидов (кроме стеринов и некоторых минорных липидов) содержат высшие жирные кислоты (ВЖК).
В состав мембран входят только ФОСФОЛИПИДЫ (ФЛ), ГЛИКОЛИПИДЫ (ГЛ) и ХОЛЕСТЕРИН (ХС).
В природных фосфолипидах R1 и R2 - разные. R1 - насыщенная жирная кислота, R2.- ненасыщенная жирная кислота. Однако, есть и исключения: основным липидным компонентом легочного сурфактанта является ГФЛ, у которого и R1, и R2 – радикалы пальмитиновой кислоты, а полярная группировка – холин.
2. СФИНГОФОСФОЛИПИДЫ (СФЛ) - содержат спирт сфингозин: СФИНГОМИЕЛИНЫ.
Сфингофосфолипиды бывают различными по строению, но имеют общие черты. Молекула сфингофосфолипида содержит сфингозин, жирную кислоту, фосфорную кислоту и полярную группировку.
ОБЩАЯ ФОРМУЛА СФЛ представлена на рисунке.
Сфингозин - это 2-хатомный непредельный аминоспирт.
Жирная кислота присоединена
пептидной связью к
Фосфолипиды - это амфифильные вещества. Расположение гидрофильных и гидрофобных участков особое. Гидрофильные участки (остаток фосфорной кислоты и полярная группировка) образуют "головку", а гидрофобные радикалы жирных кислот (R1 и R2) образуют "хвосты".
Поэтому молекулу фосфолипида обозначают:
ГЛИКОЛИПИДЫ.
Состоят из сфингозина, жирной кислоты и молекулы какого-либо углевода. Если в формулу СФЛ вместо фосфорной кислоты поставить какой-нибудь углевод, то получим формулу ГЛ. Гликолипиды тоже имеют гидрофильную "головку" и 2 гидрофобных "хвоста". Общая схема их строения представлена на рисунке:
Гликолипиды классифицируют в зависимости от строения углеводного компонента.
Различают 2 группы гликолипидов:
1. ЦЕРЕБРОЗИДЫ. В качестве углеводного компонента содержат какой-либо моносахарид (глюкоза, галактоза), либо дисахарид, или нейтральный небольшой олигосахарид.
2. ГАНГЛИОЗИДЫ. Углеводным компонентом является олигосахарид, состоящий из разных мономеров, как самих моносахаридов, так и их производных. Этот олигосахарид обязательно кислый, в его состав обязательно входит сиаловая кислота. Благодаря определенной последовательности мономеров, олигосахариды в составе ганглиозида придают молекуле выраженные антигенные свойства.
СТЕРОИДЫ.
Делятся на 2 группы.
1. Стерины (в их составе полициклическая стуктура стерана).
2. Стериды (эфиры холестерина и высших жирных кислот).
Свойства стероидов.
Стерины содержат гидроксильную группу (-ОН), поэтому они немножко гидрофильны, но всётаки их молекулы в основном гидрофобны. К ним относится холестерин.
Холестерин является полициклическим веществом. Преобладают гидрофобные свойства, но есть одна ОН-группа.
Стериды являются полностью гидрофобными веществами.
ФЛ и ГЛ вместе называют "полярные липиды". Если смешать полярные липиды с водой, то наблюдается взаимодействие между ними и при определенных условиях полярные липиды могут спонтанно образовывать бимолекулярный слой (бислой), схематично представленный на рисунке:
Между "головками" ионные, водородные связи, между "хвостами" - гидрофобное взаимодействие. Липидная часть мембраны состоит из таких липидов.
Свойства бислоя липидов:
1. Маленькая толщина - в 2 молекулы (4-13 нм)
2. Высокая эластичность. При 37оС липоиды находятся в жидком состоянии. Значит, возможны перемещения, однако скорость их диффузии в 100 раз меньше, чем у молекул воды.
Виды движений: а)в пределах своего монослоя; б) вращательные движения; в) флуктуация "хвостов".
Переход молекулы из одного слоя в другой - это редкое явление.
В настоящее время мембрана рассматривается как жидкокристаллическая структура. Наряду с диффузией имеется упорядоченность.
3. Третье свойство бислоя: низкая электропроводность. Поэтому липидный бислой является хорошим диэлектриком.
4. Четвертое свойство связано с избирательной проницаемостью липидного бислоя.
Сквозь него могут свободно проходить небольшие электронейтральные молекулы кислорода, углекислоты, азота, а также вещества, имеющие гидрофобную природу. Например, стероидные гормоны, обладающие внутриклеточным механизмом действия, широко применяются в медицине, в том числе и местно - они способны проникать даже через кожу, слизистую оболочку глаз (лечение кожных и глазных заболеваний). Органические растворители тоже проникают внутрь через кожу или легкие при вдыхании паров. Поэтому возможны отравления этими веществами через кожу, слизистые оболочки, дыхательные пути.
Заряженные молекулы через билипидный слой не проникают. Поэтому транспорт таких молекул осуществляют специальные мембранные транспортные белки.
Кроме липоидов, мембрана содержит и белки.
Встречаются 2 типа белков:
1. Периферические белки
- взаимодействуют с "головками"
полярных липидов
2. Интегральные белки - взаимодействуют как с "головками" липидов, так и с гидрофобными "хвостами". В интегральных белках преобладают гидрофобные аминокислоты.
Белки, как и липоиды, слабо связаны с мембранами. Поэтому периферические белки часто сравнивают с льдинами, которые плавают по морю, а интегральные - с айсбергами. Имеются также специальные белки ("якорные"), которые прикрепляют мембрану к белкам цитоскелета.
РОЛЬ МЕМБРАННЫХ БЕЛКОВ.
1. ТРАНСПОРТ ГИДРОФИЛЬНЫХ
2. ФЕРМЕНТАТИВНАЯ РОЛЬ.
Ферменты, заключенные в мембрану, обладают рядом особенностей каталитических свойств. У этих ферментов особая чувствительность к факторам окружающей среды.
а) Участвуют в рецепции.
б) Обеспечивают взаимодействие клеток друг с другом.
в) Некоторые углеводные
компоненты обеспечивают
Мембраны асимметричны. 2 монослоя отличаются друг от друга по своему составу. Например, гликолипиды плазматической мембраны всегда находятся в наружном монослое. Асимметрия характерна и для белковых компонентов.
Аденилатциклаза. Ее активный центр находится на внутренней части мембраны. Белки-рецепторы свой углеводный компонент содержат с внешней стороны мембраны.
Важнейшим компонентом плазматических мембран является холестерин.
Холестерин взаимодействует с гидрофобными хвостами полярных молекул и ограничивает скорость диффузии липидов. Поэтому холестерин называют стабилизатором биологических мембран. Компоненты мембран не только движутся в пространстве, но и постоянно обновляются. Их место занимают новые молекулы.
В учебную программу входит только обмен ГФЛ и холестерина. Липоиды синтезируются на мембранах эндоплазматического ретикулума. Наблюдается постоянное передвижение липоидов от мембран ЭПС к другим мембранам.
СИНТЕЗ ХОЛЕСТЕРИНА
Протекает в основном в печени на мембранах эндоплазматического ретикулума гепатоцитов. Этот холестерин - эндогенный. Происходит постоянный транспорт холестерина из печени в ткани. Для построения мембран используется также пищевой (экзогенный) холестерин. Ключевой фермент биосинтеза холестерина - ГМГ-редуктаза (бета-гидрокси, бета-метил, глутарил-КоА редуктаза). Этот фермент ингибируется по принципу отрицательной обратной связи конечным продуктом - холестерином.
ТРАНСПОРТ ХОЛЕСТЕРИНА.
Пищевой холестерин транспортируется хиломикронами и попадает в печень. Поэтому печень является для тканей источником и пищевого холестерина (попавшего туда в составе хиломикронов), и эндогенного холестерина.
В печени синтезируются и затем попадают в кровь ЛОНП - липопротеины очень низкой плотности (состоят на 75% из холестерина), а также ЛНП - липопротеины низкой плотности(в их составе есть апобелок апоВ100.
Почти во всех клетках имеются рецепторы для апоВ100. Поэтому ЛНП фиксируются на поверхности клеток. При этом наблюдается переход холестерина в клеточные мембраны. Поэтому ЛНП способны снабжать холестерином клетки тканей.
Помимо этого, происходит и освобождение
холестерина из тканей и транспорт его
в печень. Транспортируют холестерин из
тканей в печень липопротеины высокой
плотности (ЛВП). Они содержат очень мало
липидов и много белка. Синтез ЛВП протекает в
печени. Частицы ЛВП имеют форму диска,
и в их составе находятся апобелки апоА, апоС и апоЕ.
В кровеносном русле к ЛНП присоединяется
белок-фермент лецитинхолестеринацилтрансфера
АпоС и апоЕ могут переходить от ЛВП на хиломикроны или ЛОНП. Поэтому ЛВП являются донорами апоЕ и апоС. АпоА является активатором ЛХАТ.
ЛХАТ катализирует следующую реакцию:
Это реакция переноса жирной кислоты из положения R2 на холестерин.
Реакция является очень важной, потому что образующийся эфир холестерина является очень гидрофобным веществом и сразу переходит в ядро ЛВП - так при контакте с мембранами клеток ЛВП удаляют из них избыток холестерина. Дальше ЛВП идут в печень, там разрушаются, и избыток холестерина удаляется из организма.
Нарушение соотношения между количеством ЛНП, ЛОНП и ЛВП может вызывать задержку холестерина в тканях. Это приводит к атеросклерозу. Поэтому ЛНП называют атерогенными липопротеинами, а ЛВП - антиатерогенными липопротеинами. При наследственном дефиците ЛВП наблюдаются ранние формы атеросклероза.
1. Структурная - составляют основу биологических мембран.
2. Регуляторная:
а) вместе с белковыми компонентами обеспечивают избирательную проницаемость биологических мембран;
б) при катаболизме липоидов образуются биологически активные вещества - регуляторы метаболизма.
КАТАБОЛИЗМ ЛИПОИДОВ.
Целью катаболизма является
образование биологически
Какие же биологически активные вещества образуются из холестерина?
1. Стероидные гормоны.
2. Желчные кислоты.
3. В коже под действием ультрафиолетового облучения образуется витамин D3.
ГФЛ разрушаются путем
гидролиза под действием
Какие биологически активные вещества образуются из ГФЛ?
При образовании биологически активных веществ наибольшее значение имеют фосфолипазы "А2" и "С".
Внутриклеточными посредниками при действии гормонов на клетку являются продукты гидролиза фосфолипазой "С" фосфорилированных фосфатидилинозитолов (диацилглицерин и инозитолфосфат) - смотрите лекцию "Гормоны".
Фосфолипаза А2 отщепляет ненасыщенные жирные кислоты, которые могут быть предшественниками биологически активных веществ.
Общим предшественником биологически активных веществ является АРАХИДОНОВАЯ КИСЛОТА, из которой образуется несколько групп этих веществ: ПГ (ПРОСТАГЛАНДИНЫ), Тх (ТРОМБОКСАНЫ), ЛТ (ЛЕЙКОТРИЕНЫ). Образуются эти вещества из полиненасыщенной арахидоновой кислоты в результате реакций ПЕРЕКИСНОГО ОКИСЛЕНИЯ.
Впервые возможность перекисного окисления липидов (ПОЛ) была постулирована в 1887 году А.Н.Бахом.
Арахидоновая кислота содержит 20 углеродных атомов и 4 двойные связи. В естественных условиях молекула арахидоновой кислоты имеет конфигурацию шпильки.
Арахидоновая кислота является субстратом для оксигеназ (ферменты, включающие кислород в состав субстрата).
Перекисное окисление
арахидоновой кислоты
Перекиси - вещества нестойкие и быстро разрушаются. В липиде появляются "ОН"-группы или кетогруппы. В тканях человека и животных имеются два фермента перекисного окисления: ЦИКЛООКСИГЕНАЗА и ЛИПООКСИГЕНАЗА. При окислении с участием циклооксигеназы одновременно с окислением происходит циклизация, при действии липооксигеназы окисление идет без циклизации.
Продукт действия циклооксигеназы: гидроперекись простагландин G2 (ПГG2). Затем он преобразуется в другую гидроперекись - ПГН2. Далее в результате действия других окислительных ферментов из ПГН2 образуются другие простагландины (они обозначаются латинскими буквами D, E, F и т.д.). Из ПГН2 образуется ещё 2 тромбоксана (Тх).