Автор работы: Пользователь скрыл имя, 12 Марта 2014 в 15:16, курс лекций
Эйлеров цикл содержит не только все ребра (по одному разу), но и все вершины графа (возможно, по несколько раз). Ясно, что эйлеровым может быть только связный граф. С эйлеровым циклом как раз связана задача о кенигсбергских мостах, приведшей к исторически первой попытке развития теории графов как самостоятельного предмета. Чтобы решить данную задачу потребуется сначала сформулировать и доказать теорему. Эта теорема справедлива также и для мультиграфов, и для псевдографов, исключая тот случай, когда псевдограф имеет только одну вершину.
Пусть задан конечный универсум U, и число элементов в нем не превосходит разрядности компьютера, . Элементы универсума нумеруются:
Подмножество A универсума U представляется кодом (машинным словом или битовой шкалой) C, в котором:
где – это i-й разряд кода C.
Код пересечения множеств A и B есть поразрядное логическое произведение кода множества A и кода множества B. Код объединения множеств A и B есть поразрядная логическая сумма кода множества A и кода множества B. Код дополнения множества A есть инверсия кода множества A. В большинстве компьютеров для этих операций есть соответствующие машинные команды. Таким образом, операции над небольшими множествами выполняются весьма эффективно. В некоторых языках программирования, например в Паскале, это представление множеств непосредственно включено в состав типов данных языка.
Если мощность универсума превосходит размер машинного слова, но не очень велико, то для представления множеств используются массивы битовых шкал. В этом случае операции над множествами реализуются с помощью циклов по элементам массива.
Информация о работе Лекции по "Развитию операционных систем"