Лекции по "Развитию операционных систем"

Автор работы: Пользователь скрыл имя, 12 Марта 2014 в 15:16, курс лекций

Краткое описание

Эйлеров цикл содержит не только все ребра (по одному разу), но и все вершины графа (возможно, по несколько раз). Ясно, что эйлеровым может быть только связный граф. С эйлеровым циклом как раз связана задача о кенигсбергских мостах, приведшей к исторически первой попытке развития теории графов как самостоятельного предмета. Чтобы решить данную задачу потребуется сначала сформулировать и доказать теорему. Эта теорема справедлива также и для мультиграфов, и для псевдографов, исключая тот случай, когда псевдограф имеет только одну вершину.

Прикрепленные файлы: 21 файл

Лекция 10.doc

— 228.00 Кб (Просмотреть файл, Скачать документ)

Лекция 11.doc

— 575.00 Кб (Просмотреть файл, Скачать документ)

Лекция 12.doc

— 518.50 Кб (Просмотреть файл, Скачать документ)

Лекция 13.doc

— 335.50 Кб (Просмотреть файл, Скачать документ)

Лекция 14.doc

— 291.50 Кб (Просмотреть файл, Скачать документ)

Лекция 15.doc

— 184.00 Кб (Просмотреть файл, Скачать документ)

Лекция 16.doc

— 147.00 Кб (Просмотреть файл, Скачать документ)

Лекция 17.doc

— 815.50 Кб (Просмотреть файл, Скачать документ)

Лекция 19.doc

— 281.00 Кб (Просмотреть файл, Скачать документ)

Лекция 2.doc

— 167.00 Кб (Скачать документ)

Пусть задан конечный универсум U, и число элементов в нем не превосходит разрядности компьютера, . Элементы универсума нумеруются:

.

Подмножество A универсума U представляется кодом (машинным словом или битовой шкалой) C, в котором:

где – это i-й разряд кода C.

Код пересечения множеств A и B есть поразрядное логическое произведение кода множества A и кода множества B. Код объединения множеств A и B есть поразрядная логическая сумма кода множества A и кода множества B. Код дополнения множества A есть инверсия кода множества A. В большинстве компьютеров для этих операций есть соответствующие машинные команды. Таким образом, операции над небольшими множествами выполняются весьма эффективно. В некоторых языках программирования, например в Паскале, это представление множеств непосредственно включено в состав типов данных языка.

Если мощность универсума превосходит размер машинного слова, но не очень велико, то для представления множеств используются массивы битовых шкал. В этом случае операции над множествами реализуются с помощью циклов по элементам массива.

 

 

 


Лекция 20.doc

— 241.00 Кб (Просмотреть файл, Скачать документ)

Лекция 22.doc

— 673.50 Кб (Скачать документ)

Информация о работе Лекции по "Развитию операционных систем"