Автор работы: Пользователь скрыл имя, 12 Марта 2014 в 15:16, курс лекций
Эйлеров цикл содержит не только все ребра (по одному разу), но и все вершины графа (возможно, по несколько раз). Ясно, что эйлеровым может быть только связный граф. С эйлеровым циклом как раз связана задача о кенигсбергских мостах, приведшей к исторически первой попытке развития теории графов как самостоятельного предмета. Чтобы решить данную задачу потребуется сначала сформулировать и доказать теорему. Эта теорема справедлива также и для мультиграфов, и для псевдографов, исключая тот случай, когда псевдограф имеет только одну вершину.
Лекция 16.
п.16. Линейное программирование.
16.2. Формы записи ЗЛП.
Модель задачи линейного программирования может быть записана в одной из приведенных ниже форм.
1. Общая, или произвольная, форма записи (ОЗЛП):
при ограничениях:
2. Симметричная, или стандартная, форма записи (СФЗЛП):
3. Каноническая, или основная, форма записи (КФЗЛП)
Указанные выше три формы записи ЗЛП эквивалентны в том смысле, что каждая из них с помощью несложных преобразований может быть сведена к другой форме, т.е. если имеется способ нахождения оптимального решения задачи в одной из указанных форм, то тем самым может быть определен оптимальный план задачи в любой другой форме (говорят о стратегической эквивалентности задачи в любой из форм).
Так при необходимости задачу минимизации можно заменить задачей максими-зации, и наоборот. Для функции одной переменной это утверждение очевидно. В самом деле, если – точка минимума функции , то для функции она являя-ется точкой максимума, так как графики функций и симметричны относи-тельно оси абсцисс. Итак,
То же самое имеет место и в случае функции n переменных:
Неравенство типа путем умножения левых и правых частей на -1 можно превратить в неравенство типа , и наоборот. Ограничения-неравенства
преобразуются в ограничения-равенства путем прибавления (вычитания) к левым частям дополнительных (балансовых) неотрицательных переменных :
В случае необходимости ограничение-равенство
можно записать в виде системы неравенств
Если в ЗЛП какая-то переменная не подчиняется условию неотрицательности, ее заменяют разностью двух других неотрицательных переменных и :
Вводимые дополнительные переменные имеют определенный экономический смысл, прямо связанный с содержанием задачи. Так, в задачах об использовании ресурсов они показывают величину неиспользованного ресурса, в задачах о смесях – потребление соответствующего компонента сверх нормы.
Рассмотрим на примерах, как можно делать переход от одной формы записи к другой.
Пример 16.3. Привести к канонической форме записи ЗЛП:
Решение. Заменяем функцию Z на . Из левых частей ограничения типа ³ вычитаем неотрицательные переменные , а к левой части ограничения типа £ прибавляем неотрицательную переменную . Переменную , которая может быть произвольного знака, заменяем разностью двух неотрицательных переменных:
В результате получаем модель задачи в каноническом виде:
.
Пример 16.4. Привести к симметрической форме записи задачу, заданную в виде:
Решение. Так как целевая функция по условию максимизируется, то все ограни-чения в канонической форме записи должны быть типа £. Поскольку в систему ограничений входит три неравенства, то исключим из системы любые три переменные. В данном случае удобно исключить из первого ограничения , из второго - и из третьего - .Учитывая неотрицательность переменных, получаем:
Подставив в целевую функцию, получаем:
Опустив , придем к эквивалентным неравенствам. В результате получаем следующую ЗЛП в симметрической форме:
,
Информация о работе Лекции по "Развитию операционных систем"