Автор работы: Пользователь скрыл имя, 20 Июня 2014 в 09:50, курсовая работа
Цель работы: изучение математических основ и редактирования векторной графики.
Задачи:
- Изучить основы компьютерной графики;
- Рассмотреть виды компьютерной графики;
- Раскрыть понятие векторной графики;
- Перечислить достоинства и недостатки векторной графики;
-Изучить математические основы векторной графики;
-Рассмотреть основные принципы построения и редактирования графических объектов векторной графики.
Введение………………………………………………………………………………...4
Глава І. Компьютерная графика. Основные понятия векторной графики………….7
І.1. Компьютерная графика и ее виды………………………………………………...7
І.1.1. Фрактальная графика…………………………………………………………….8
І.1.2. Трехмерная графика……………………………………………………………...9
І.1.3. Растровая графика……………………………………………………………..10
І.1.4. Векторная графика……………………………………………………………...11
І.2. Понятие векторной графики, ее достоинства и недостатки……………………12
Выводы по І главе……………………………………………………………………15
Глава ІІ. Построение и редактирование объектов векторной графики, ее математические основы……………………………………………………………....16
ІІ.1. Математические основы векторной графики…………………………………..16
ІІ.1.1. Точка, линия, отрезок прямой………………………………………………...18
ІІ.1.2. Кривые…………………………………………………………………………18
ІІ.1.3. Кривые Безье…………………………………………………………………...19
ІІ.1.4. Сплайны………………………………………………………………………..21
ІІ.1.5. Алгоритмы заливки плоских фигур…………………………………………23
ІІ.1.6. Визуализация кривых Безье и шрифтов……………………………………...25
ІІ.1.7. Аппроксимация………………………………………………………………...26
ІІ.2. Основной принцип построения и редактирования графических объектов векторной графики……………………………………………………………………27
Выводы по ІІ главе……………………………………………………………………29
Заключение……………………………………………………………………………30
Список используемой литературы…………………………………………………31
Содержание
Введение…………………………………………………………
Глава І. Компьютерная графика. Основные понятия векторной графики………….7
І.1. Компьютерная графика и ее виды………………………………………………...7
І.1.1. Фрактальная графика……………………………………………………………
І.1.2. Трехмерная графика……………………………………………………………
І.1.3. Растровая графика……………………………………………………………
І.1.4. Векторная графика……………………………………………………………
І.2. Понятие векторной графики, ее достоинства и недостатки……………………12
Выводы по І главе…………………………………………………………………
Глава ІІ. Построение и редактирование
объектов векторной графики, ее математические
основы…………………………………………………………….
ІІ.1. Математические основы векторной графики…………………………………..16
ІІ.1.1. Точка, линия, отрезок прямой………………………………………………...18
ІІ.1.2. Кривые………………………………………………………………
ІІ.1.3. Кривые Безье…………………………………………………………………
ІІ.1.4. Сплайны……………………………………………………………
ІІ.1.5. Алгоритмы заливки плоских фигур…………………………………………23
ІІ.1.6. Визуализация кривых Безье и шрифтов……………………………………...25
ІІ.1.7. Аппроксимация……………………………………………
ІІ.2. Основной принцип построения
и редактирования графических объектов
векторной графики……………………………………………………………
Выводы по ІІ главе…………………………………………………………………
Заключение……………………………………………………
Список используемой литературы…………………………………………………
Введение
В наш XXI век, век высоких технологий, понятие компьютерной графики неразрывно связано с нашей жизнью. Суперблокбастер кинематографа, реклама, выбор прически в парикмахерской – везде мы сталкиваемся с примерами графической обработки данных.
Представление данных на мониторе компьютера в графическом виде впервые было реализовано в середине 50-х годов для больших ЭВМ, применявшихся в научных и военных исследованиях. С тех пор графический способ отображения данных стал неотъемлемой принадлежностью подавляющего числа компьютерных систем, в особенности персональных. Существует специальная область информатики, изучающая методы и средства создания и обработки изображений с помощью программно-аппаратных вычислительных комплексов, – компьютерная графика. Она охватывает все виды и формы представления изображений, доступных для восприятия человеком либо на экране монитора, либо в виде копии на внешнем носителе (бумага, кинопленка, ткань и прочее). Без компьютерной графики невозможно представить себе не только компьютерный, но и обычный, вполне материальный мир. Визуализация данных находит применение в самых разных сферах человеческой деятельности. Для примера назовем медицину (компьютерная томография), научные исследования (визуализация строения вещества, векторных полей и других данных), моделирование тканей и одежды, опытно-конструкторские разработки.
Как и любая другая информация в ЭВМ, графические изображения хранятся, обрабатываются и передаются по линиям связи в закодированном виде. В зависимости от способа формирования изображений компьютерную графику принято подразделять на растровую, векторную, трехмерную и фрактальную.
Работа с компьютерной графикой - одно из самых популярных направлений использования персонального компьютера. Без нее не обходится ни одна современная мультимедийная программа. Необходимость широкого использования графических программных средств стала особенно ощутимой в связи с развитием Интернета. Потребность в разработке привлекательных Web-страниц во много раз превышает возможности художников и дизайнеров, которым можно было бы поручить эту работу. В связи с этим современные графические средства разрабатываются с таким расчетом, чтобы не только дать удобные инструменты профессиональным художникам и дизайнерам, но и предоставить возможность для продуктивной работы и тем, кто не имеет необходимых профессиональных навыков и врожденных способностей к художественному творчеству.
Компьютерная графика – раздел информатики, занимающийся проблемами создания и обработки на компьютере графических изображений. Программы векторной или, по-другому, контурной графики работают с объектами, которые могут быть созданы на основе кривых и геометрических фигур и сохранены в памяти компьютера в виде описаний контуров. Это различные схемы, логотипы, пиктограммы, рисунки, текстовые объекты. Ими пользуются как художники и дизайнеры, так и люди других профессий при подготовке файлов технической документации, описании схем, планов, чертежей, оформлении курсовых и дипломных работ, рефератов и т.д.
Цель работы: изучение математических основ и редактирования векторной графики.
Задачи:
- Изучить основы компьютерной графики;
- Рассмотреть виды компьютерной графики;
- Раскрыть понятие векторной графики;
- Перечислить достоинства
и недостатки векторной
-Изучить математические основы векторной графики;
-Рассмотреть основные
принципы построения и
Объект исследования: процесс редактирования векторной графики.
Предмет исследования: математические основы векторной графики.
Методы исследования:
Анализ научной и
методической литературы и
Анализ графических редакторов векторной графики.
Глава І. Компьютерная графика. Основные понятия векторной графики
І.1. Компьютерная графика и ее виды
Компьютерная графика – раздел информатики, занимающийся проблемами создания и обработки на компьютере графических изображений. Само понятие компьютерной графики включает в себя следующие основные понятия. Разрешение экрана. Это свойство компьютерной системы (зависит от монитора и видеокарты) и операционной системы (зависит от настроек Windows). Измеряется в пикселях и определяет размер изображения, которое может поместиться на экране целиком. Разрешение принтера. Это свойство принтера, выражающее количество отдельных точек, которые могут быть напечатаны на участке единичной длины. Измеряется в единицах dpi (точки на дюйм) и определяет размер изображения при заданном качестве или, наоборот, качество изображения при заданном размере. Разрешение изображения. Это свойство самого изображения. Измеряется также в точках на дюйм и задается при создании изображения в графическом редакторе или с помощью сканера. Значение разрешения изображения хранится в файле изображения и неразрывно связано с другим свойством изображения – его физическим размером. Физический размер изображения может измеряться как в пикселах, так и в единицах длины. Он создается при создании изображения и хранится вместе с файлом. Цветовое разрешение. Определяет метод кодирования цветовой и информации, и от него зависит то, сколько цветов на экране может отображаться одновременно. Цветовая модель. Это способ разделения цветового оттенка на составляющие компоненты. Существует много различных типов цветовых моделей, но в компьютерной графике, как правило, применяется не более трех (RGB, CMYK, HSB). Цветовая палитра. Это таблица данных, в которой хранится информация о том, каким кодом закодирован тот или иной цвет. Самый удобный для компьютера способ кодирования цвета – 24-разрядный, True Color. Приложения компьютерной графики очень разнообразны. Для каждого направления создается специальное программное обеспечение, которое называется графическими программами, или графическим пакетом.
Основные направления компьютерной графики:
Научная графика. Назначение – визуализация объектов научных исследований, графическая обработка результатов расчетов; проведение вычислительных экспериментов с наглядным представлением их результатов.
Деловая графика. Предназначена для создания иллюстраций, часто используемых в работе различных учреждений.
Конструкторская графика (САПР).
Иллюстративная графика. Простейшие программные средства иллюстративной графики называются графическими редакторами.
Художественная и рекламная графика.
Компьютерная анимация – получение движущихся изображений на дисплее.
Несмотря на то, что для работы с компьютерной графикой существует множество классов программного обеспечения, различают всего три вида компьютерной графики: растровая, векторная, фрактальная, трехмерная.
І.1.1. Фрактальная графика
Фрактальная графика основана на математических вычислениях. Базовым элементом фрактальной графики является сама математическая формула, то есть никаких объектов в памяти компьютера не хранится и изображение строится исключительно по уравнениям. Таким способом строят как простейшие регулярные структуры, так и сложные иллюстрации, имитирующие природные ландшафты и трехмерные объекты.
І.1.2. Трехмерная графика
Трехмерная графика нашла широкое применение в таких областях, как научные расчеты, инженерное проектирование, компьютерное моделирование физических объектов. В упрощенном виде для пространственного моделирования объекта требуется: спроектировать и создать виртуальный каркас (“скелет”) объекта, наиболее полно соответствующий его реальной форме; спроектировать и создать виртуальные материалы, по физическим свойствам визуализации похожие на реальные; присвоить материалы различным частям поверхности объекта (на профессиональном жаргоне – “спроектировать текстуры на объект”); настроить физические параметры пространства, в котором будет действовать объект, – задать освещение, гравитацию, свойства атмосферы, свойства взаимодействующих объектов и поверхностей; задать траектории движения объектов; рассчитать результирующую последовательность кадров; наложить поверхностные эффекты на итоговый анимационный ролик. Для создания реалистичной модели объекта используют геометрические примитивы (прямоугольник, куб, шар, конус и прочие) и гладкие, так называемые сплайновые поверхности. В последнем случае применяют чаще всего метод бикубических рациональных В-сплайнов на неравномерной сетке (NURBS). Вид поверхности при этом определяется расположенной в пространстве сеткой опорных точек. Каждой точке присваивается коэффициент, величина которого определяет степень ее влияния на часть поверхности, проходящей вблизи точки. От взаимного расположения точек и величины коэффициентов зависит форма и “гладкость” поверхности в целом. После формирования “скелета” объекта необходимо покрыть его поверхность материалами. Все многообразие свойств в компьютерном моделировании сводится к визуализации поверхности, то есть к расчету коэффициента прозрачности поверхности и угла преломления лучей света на границе материала и окружающего пространства.
Следующим этапом является наложение (“проектирование”) текстур на определенные участки каркаса объекта. При этом необходимо учитывать их взаимное влияние на границах примитивов. Проектирование материалов на объект – задача трудно формализуемая, она сродни художественному процессу и требует от исполнителя хотя бы минимальных творческих способностей.
После завершения конструирования и визуализации объекта приступают к его “оживлению”, то есть заданию параметров движения. Компьютерная анимация базируется на ключевых кадрах. В первом кадре объект выставляется в исходное положение. Через определенный промежуток (например, в восьмом кадре) задается новое положение объекта и так далее до конечного положения. Промежуточные значения вычисляет программа по специальному алгоритму. При этом происходит не просто линейная аппроксимация, а плавное изменение положения опорных точек объекта в соответствии с заданными условиями. Эти условия определяются иерархией объектов (то есть законами их взаимодействия между собой), разрешенными плоскостями движения, предельными углами поворотов, величинами ускорений и скоростей. Такой подход называют методом инверсной кинематики движения. Особую область трёхмерного моделирования в режиме реального времени составляют тренажеры технических средств – автомобилей, судов, летательных и космических аппаратов. В них необходимо очень точно реализовывать технические параметры объектов и свойства окружающей физической среды. Самые совершенные на сегодняшний день устройства созданы для обучения пилотированию космических кораблей и военных летательных аппаратов.
І.1.3. Растровая графика
Для растровых изображений, состоящих из точек, особую важность имеет понятие разрешения, выражающее количество точек, приходящихся на единицу длины. При этом следует различать: разрешение оригинала; разрешение экранного изображения; разрешение печатного изображения. Разрешение оригинала. Разрешение оригинала измеряется в точках на дюйм и зависит от требований к качеству изображения и размеру файла, способу оцифровки и создания исходной иллюстрации, избранному формату файла и другим параметрам. В общем случае действует правило: чем выше требование к качеству, тем выше должно быть разрешение оригинала. Для экранных копий изображения элементарную точку растра принято называть пикселом. Размер пиксела варьируется в зависимости от выбранного экранного разрешения (из диапазона стандартных значений), разрешение оригинала и масштаб отображения.
І. 1. 4. Векторная графика
Если в растровой графике базовым элементом изображения является точка, то в