Расчет сложной атмосферной колонны цеха АТ

Автор работы: Пользователь скрыл имя, 27 Ноября 2013 в 12:46, курсовая работа

Краткое описание

В данном курсовом проекте предлагается расчет сложной атмосферной колонны цеха АТ-6. Колонна тарельчатая колпачковая, с двумя стриппинг-секциями и возможностью подачи пара как в саму колонну так и в отпарные секции.

Содержание

ВВЕДЕНИЕ…………………………………………………………………….6
1. ЛИТЕРАТУРНЫЙ ОБЗОР………………………………………………….8
1.1. СУЩНОСТЬ ПРОЦЕССА ПЕРЕГОНКИ…………………………8
1.2. МЕТОДЫ ПЕРЕГОНКИ НЕФТИ………………………………...10
1.2.1. Перегонка нефти с однократным, многократным и постепенным испарением…………………………………...10
1.2.2. Перегонка нефти в присутствии испаряющегося агента….12
1.2.3. Перегонка нефти в вакууме…………………………………14
1.2.4. Азеотропная и экстрактивная ректификация………………14
1.3. РЕКТИФИКАЦИОННЫЕ КОЛОННЫ…………………………...17
1.3.1. Устройство и принцип действия ректификационных
колонн………………………………………………………...17
1.3.2. Типы ректификационных колонн…………………………...19
1.4. ТЕХНОЛОГИЧЕСКИЕ СХЕМЫ УСТАНОВОК ПЕРВИЧНОЙ ПЕРЕГОНКИ НЕФТИ……………………………………………...22
1.4.1. Атмосферные установки…………………………………….22
1.4.2. Вакуумные установки………………………………………..26
1.4.3. Атмосферно-вакуумная установка………………………….28
1.4.4. Комбинированная установка первичной переработки
нефти………………………………………………………….31
2. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ…………………………………………...32
2.1. Технологическая схема установки…………………………………32
2.2. Материальный баланс установки…………………………………..32
2.3. Описание атмосферной колонны…………………………………..41
2.4. Физические характеристики по высоте колонны…………………42
2.4.1. Давление……………………………………………………...42
2.4.2. Плотность и молекулярный вес……………………………..43
2.4.3. Температура…………………………………………………..45
2.5. Доля отгона сырья на входе в колонну…………………………….51
2.6. Тепловой баланс колонны…………………………………………..53
2.7. Внутренние материальные потоки в колонне……………………..55
2.7.1. Верхнее сечение колонны…………………………………...55
2.7.2. Среднее сечение колонны…………………………………...60
2.7.3. Нижнее сечение колонны……………………………………63
2.8. Диаметр колонны……………………………………………………66
2.9. Уточнение температур вывода боковых фракций………………...69
2.9.1. Уточнение температуры вывода керосина…………………69
2.9.2. Уточнение температуры вывода дизтоплива………………72
2.10. Расчет стриппинг-секций………………………………………….75
2.10.1. Расчет стриппинг-секции керосина………………………..76
2.10.2. Расчет стриппинг-секции дизтоплива……………………..78
2.9.1. Уточнение температуры вывода керосина…………………69
2.9.2. Уточнение температуры вывода дизтоплива………………72
2.10. Расчет стриппинг-секций………………………………………….75
2.10.1. Расчет стриппинг-секции керосина………………………..76
2.10.2. Расчет стриппинг-секции дизтоплива……………………..78
2.11. Высота колонны……………………………………………………81
2.12. Диаметры штуцеров………………………….……………………82
2.12.1. Ввод сырья в колонну………………………………………83
2.12.2. Вывод бензина………………………………………………83
2.12.3. Вывод мазута………………………………………………..84
2.12.4. Ввод водяного пара…………………………………………84
2.12.5. Вывод первого циркуляционного орошения……………...85
2.12.6. Ввод первого циркуляционного орошения……………….85
2.12.7. Вывод второго циркуляционного орошения……………...85
2.12.8. Ввод второго циркуляционного орошения………………..86
2.12.9. Вывод дизтоплива в стриппинг……………………………86
2.12.10. Ввод паров из стриппинга дизтоплива…………………..87
2.12.11. Вывод керосина в стриппинг……………………………..87
2.12.12. Ввод паров из стриппинга керосина……………………..87
2.12.13. Ввод водяного пара в стриппинг керосина……………...88
2.12.14. Вывод керосина из стриппинга ………………………….88
2.12.15. Вывод паров из стриппинга керосина……………………88
2.12.16. Ввод водяного пара в стриппинг дизтоплива……………89
2.12.17. Вывод дизтоплива из стриппинга …………………..89
2.12.18. Вывод паров из стриппинга дизтоплива……………90
ПРИЛОЖЕНИЕ 1. Кривые ИТК и ОИ………………………………………91
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ………………………….92

Прикрепленные файлы: 1 файл

Курсовой проект сложная Атмосферная колонна (на печать).doc

— 3.16 Мб (Скачать документ)

Перегонка с многократным испарением состоит из двух или более  однократных процессов перегонки  с повышением рабочей температуры  на каждом этапе. 

Если при каждом однократном  испарении нефти происходит бесконечно малое изменение ее фазового состояния, а число однократных испарений бесконечно большое, то такая перегонка является перегонкой с постепенным испарением.

Четкость разделения нефти на фракции при перегонке  с однократным испарением наихудшая  по сравнению с перегонкой с многократным и постепенным испарением. О плохой четкости разделения при однократном испарении нефти можно судить по рис. 1.1, где изображены кривые разгонки фракций 40 — 285°С. На рисунке обозначены линиями 1 — исходная фракция (обобщенная); 2, 3 и 4 — легкие фракции паровой фазы; 5 и 6 — тяжелые фракции жидкой фазы. Из рисунка следует, что температурные пределы выкипания полученных продуктов мало отличаются друг от друга.

 

 

 

 

 

 

 

 

 

 

 

Кривые разгонки фракций 40 — 285°С


Рис. 1.1

Кривые разгонки с однократным и многократным испарением

 

 

Рис. 1.2

 

Если для нефтяной фракции построить кривые разгонки с однократным и многократным испарением (рис. 1.2), то окажется, что  температура начала кипения фракций  при однократном испарении (линия 2 на рисунке) выше, а конца кипения  ниже, чем при многократном испарении (линия 1). Если высокой четкости разделения фракций не требуется, то метод однократного испарения экономичнее. К тому же при максимально допустимой температуре нагрева нефти 350 — 370°С (при более высокой температуре начинается разложение углеводородов) больше продуктов переходит в паровую фазу по сравнению с многократным или постепенным испарением. Для отбора из нефти фракций, выкипающих выше 350 — 370°С, применяют вакуум или водяной пар. Использование в промышленности принципа перегонки с однократным испарением в сочетании с ректификацией паровой и жидкой фаз позволяет достигать высокой четкости разделения нефти на фракции, непрерывности процесса и экономичного расходования топлива на нагрев сырья.

 

Принципиальная схема для промышленной перегонки нефти приведена на рис. 1.3.


 

Рис. 1.3

 

Исходная нефть прокачивается  насосом через теплообменники 4, где нагревается под действием  тепла отходящих нефтяных фракций  и поступает в огневой подогреватель (трубчатую печь) 1. В трубчатой печи нефть нагревается до заданной температуры и входит в испарительную часть (питательную секцию) ректификационной колонны 2. В процессе нагрева часть нефти переходит в паровую фазу, которая при прохождении трубчатой печи все время находится в состоянии равновесия с жидкостью. Как только нефть в виде парожидкостной смеси выходит из печи и входит в колонну (где в результате снижения давления дополнительно испаряется часть сырья), паровая фаза отделяется от жидкой и поднимается вверх по колонне, а жидкая перетекает вниз. Паровая фаза подвергается ректификации в верхней части колонны, считая от места ввода сырья. В ректификационной  колонне размещены ректификационные тарелки, на которых осуществляется контакт поднимающихся по колонне паров со стекающей жидкостью (флегмой). Флегма создается в результате того, что часть верхнего продукта, пройдя конденсатор-холодильник 3, возвращается в состоянии на верхнюю тарелку и стекает на нижележащие, обогащая поднимающиеся пары низкокипящими компонентами.[2]

 

1.2.2. Перегонка нефти в присутствии испаряющегося агента

 

Для ректификации жидкой части сырья  в нижней части ректификационной части колонны под нижнюю тарелку  необходимо вводить тепло или какой-либо испаряющий агент. В результате легкая часть нижнего продукта переходит в паровую фазу и тем самым создается паровое орошение. Это орошение, поднимаясь с самой нижней тарелки и вступая в контакт со стекающей жидкой фазой, обогащает последнюю высококипящими компонентами.

В итоге сверху колонны непрерывно отбирается низкокипящая фракция, снизу — высококипящий остаток.

Испаряющий агент вводится в  ректификационную колону с целью  повышения концентрации высококипящих  компонентов в остатке от перегонки  нефти. В качестве испаряющего агента используются пары бензина, лигроина, керосина, инертный газ, чаще всего — водяной пар.


В присутствии водяного пара в ректификационной колонне снижается парциальное  давление углеводородов, а следовательно  их температура кипения. В результате наиболее низкокипящие углеводороды, находящиеся в жидкой фазе после однократного испарения, переходят в парообразное состояние и вместе с водяным паром поднимаются вверх по колонне. Водяной пар проходит всю ректификационную колонну и уходит с верхним продуктом, понижая температуру в ней на 10 — 20°С. На практике применяют перегретый водяной пар и вводят его в колонну с температурой, равной температуре подаваемого сырья или несколько выше (обычно не насыщенный пар при температуре 350 — 450°С под давлением 2 — 3ат). 

Влияние водяного пара заключается  в следующем:

    • интенсивно перемешивается кипящая жидкость, что способствует испарению низкокипящих углеводородов;
    • создается большая поверхность испарения тем, что испарение углеводородов происходит внутрь множества пузырьков водяного пара.

Расход водяного пара зависит от количества отпариваемых компонентов, их природы и условий внизу колонны. Для хорошей ректификации жидкой фазы внизу колонны необходимо, чтобы примерно 25% ее переходило в парообразное состояние.

В случае применения в  качестве испаряющего агента инертного газа происходит большая экономии тепла, затрачиваемого на производство перегретого пара, и снижение расхода воды, идущей на его конденсацию. Весьма рационально применять инертный газ при перегонке сернистого сырья, т.к. сернистые соединения в присутствии влаги вызывают интенсивную коррозию аппаратов. Однако инертный газ не получил широкого применения при перегонке нефти из-за громоздкости  подогревателей газа и конденсаторов парогазовой смеси (низкого коэффициента теплоотдачи) и трудности отделения отгоняемого нефтепродукта от газового потока.

Удобно в качестве испаряющего агента использовать легкие нефтяные фракции — лигроино-керосино-газойлевую фракцию, т.к. это исключает применение открытого водяного пара при перегонке  сернистого сырья, вакуума и вакуумсоздающей аппаратуры, и, в то же время, избавляет от указанных сложностей работы с инертным газом.


Чем ниже температура кипения испаряющего  агента и больше его относительное  количество, тем ниже температура  перегонки. Однако чем легче испаряющий агент, тем больше его теряется в процессе перегонки. Поэтому в качестве испаряющего агента рекомендуется применять лигроино-керосино-газойлевую фракцию.[2]

 

1.2.3. Перегонка нефти  в вакууме

 

В результате перегонки  нефти при атмосферном давлении и температуре 350 — 370°С остается мазут, для перегонки которого необходимо подобрать условия, исключающие возможность крекинга и способствующие отбору максимального количества дистилляторов. Самым распространенным методом выделения фракций из мазута является перегонка в вакууме. Вакуум понижает температуру кипения углеводородов и тем самым позволяет при 410 — 420°С отобрать дистилляты, имеющие температуры кипения до 500°С (в пересчете на атмосферное давление). Нагрев мазута до 420°С сопровождается некоторым крекингом углеводородов, но если получаемые дистилляторы затем подвергаются вторичным методам переработки, то присутствие следов непредельных углеводородов не оказывает существенного влияния. При получении масляных дистилляторов разложение их сводят к минимуму, повышая расход водяного пара, снижая перепад давления в вакуумной колонне и др. Существующие промышленные установки способны поддерживать рабочее давление в ректификационных колоннах 20 мм рт. ст. и ниже.

 

1.2.4. Азеотропная и  экстрактивная ректификация

 

Рассмотренные методы перегонки  нефти дают достаточно четкие разделения компонентов, однако оказываются непригодными, когда из нефтяных фракций требуется  выделить индивидуальные углеводороды высокой чистоты (96 — 99%), которые  служат сырьем для нефтехимической промышленности (бензол, толуол, ксилол и др.)

Для выделения вышеназванных  углеводородов требуются специальные  методы перегонки: азеотропная или  экстрактивная ректификация. Эти  методы основаны на введении в систему  постороннего вещества увеличивающего разницу в летучести разделяемых углеводородов, что позволяет при помощи ректификации выделить индивидуальный углеводород высокой чистоты.


Показателем летучести чистых углеводородов  является давление их насыщенных паров  при данной температуре или температура кипения при атмосферном давлении. Таким образом, чем больше разница в температурах кипения углеводородов, тем легче разделить их обычной перегонкой. Однако если углеводороды отличаются по химическому строению, то можно использовать специальные виды перегонки, изменяющие летучесть этих углеводородов. Летучесть (u1) может быть определена как отношение мольных долей углеводородов в паровой и жидкой фазах:

 

u1=y11

 

где y1 и  х1 — мольные доли углеводорода соответственно в паровой и жидкой фазах.

Легкость разделения углеводородов перегонки зависит от их относительной летучести. Относительная летучесть двух углеводородов (a) определяется соотношением их летучестей (u1 и u2), т. е.

 

a= u1/u2= y1х2/y2х1.

 

Согласно законам Рауля  и Дальтона

 

y1=P1x1/p     и     y2=P2x2/p,

 

где P1 и P2 — давление насыщенных паров углеводородов, x1 и x2 — мольные доли углеводородов в жидкой фазе, p — общее давление в системе. Отсюда

 

a=P1x1/px1 : P2x2/px2= P1/P2.

 

Таким образом, относительная  летучесть углеводородов в идеальном  растворе равняется отношению давлений насыщенных паров чистых компонентов при температуре кипящей смеси, и чем ближе она к единице, тем сложнее разделить эти углеводороды перегонкой.


Если вводимый для  увеличения разницы в летучести  разделяемых углеводородов третий компонент менее летуч, чем исходные углеводороды, то его называют растворителем и вводят сверху ректификационной колонны и выводят снизу вместе с остатком. Такая ректификация называется экстрактивной. Растворитель должен иметь достаточно высокую температуру кипения, чтобы компоненты, полученные с растворителем в виде одной фазы, можно было легко отделить от него при помощи перегонки. Он должен хорошо растворять разделяемые компоненты, чтобы не требовалось чрезмерно большого отношения растворитель/смесь и не образовывалось двух жидких фаз (расслаивание) на тарелке. При экстрактивной ректификации моноциклических ароматических углеводородов в качестве растворителя  применяют фенол, крезолы, фурфурол, анилин и алкилфталаты.

Если добавляемое вещество более летуче, чем исходные компоненты, то его вводят в ректификационную колонну вместе с сырьем и выводят из нее вместе с парами верхнего продукта. Такую ректификацию называют азеотропной. В этом случае вводимое вещество образует азеотропную смесь с одним из компонентов сырья. Это вещество называют уводителем.

Последний должен обеспечивать образование постоянно кипящей  смеси (азеотропа) с одним или  несколькими компонентами разгоняемой  смеси. Уводитель образует азеотропную  смесь вследствие молекулярных различий между компонентами смеси.

При азеотропной ректификации моноциклических ароматических  углеводородов в качестве уводителей применяют метиловый и этиловый спирты, метилэтилкетон (МЭК) и другие вещества, образующие азеотропную смесь  с парафино-нафтеновыми углеводородами разделяемой смеси.

Уводитель должен иметь  температуру кипения близкую  к температуре кипения отгоняемого  вещества. Это позволяет получить заметную разницу между температурой кипения азеотропа и других компонентов  смеси. Уводитель должен также легко выделяться из азеотропной смеси. Весьма часто разделение бывает более полным, чем этого можно ожидать на основании лишь температурной разницы. Это объясняется большим отклонением системы от идеальной.

Парциональное и общее  давления над идеальным раствором при данной температуре отличаются от величин, вычисленных по закону Рауля. Для оценки этого отклонения вводят поправочный коэффициент, который фактически является коэффициентом активности, т. е.

 

p1=j1P1x1.

 

Коэффициент активности j является функцией физико-химических свойств всех остальных компонентов смеси и их концентраций. Для некоторых смесей в присутствии разделяющего агента подлежащие ректификации компоненты из-за их различной растворимости по-разному отклоняются от законов идеальных растворов, поэтому их коэффициенты активности различны. Установлено также, что коэффициент активности каждого компонента увеличивается по мере увеличения концентрации от 0 до 100%, однако для различных компонентов смеси в разной степени. Таким образом, для реальных смесей относительная летучесть равна отношению давления насыщенных паров и коэффициентов активности:


 

a=j1P1/j2P2.

 

Важное значение в  осуществлении экстрактивной и  азеотропной ректификаций имеет  подготовка сырья, которое должно выкипать в весьма узких пределах, т. е. установке по перегонке с третьим компонентом должна предшествовать установка предварительного разделения смеси посредством обычной ректификации. [2]

 

 

1.3.  РЕКТИФИКАЦИОННЫЕ КОЛОННЫ

 

1.3.1. Устройство и принцип  действия ректификационных колонн

 

Ректификация простых  и сложных смесей осуществляется в колоннах периодического или непрерывного действия.

Колонны периодического действия применяют на установках малой производительности при необходимости отбора большого числа фракций и высокой четкости разделения. Классическая схема такой установки указана на рис. 1.4.

 

Схема установки для  периодической ректификации

Рис. 1.4


Сырье поступает в  перегонный куб 1 на высоту около 2/3 его  диаметра, где происходит подогрев глухим паром. В первый период работы ректификационной установки отбирают наиболее летучий компонент смеси, например бензольную головку, затем, повышая температуру перегонки,  компоненты с более высокой температурой кипения (бензол, толуол и т.д.). Наиболее высококипящие компоненты смеси остаются в кубе, образовывая кубовый остаток. По окончанию процесса ректификации этот остаток охлаждают и откачивают. Куб вновь заполняется сырьем и ректификацию возобновляют. Периодичностью процесса обусловлены больший расход тепла и меньшая производительность установки. Далее на рисунке:  2 — ректификационная колонна, 3 — конденсатор-холодильник, 4 — аккумулятор, 5 — холодильник, 6 — насосы.

Информация о работе Расчет сложной атмосферной колонны цеха АТ