Автор работы: Пользователь скрыл имя, 14 Ноября 2013 в 19:29, курсовая работа
Фармакологическая активность целиком и полностью определяется строением лекарственного вещества. Вместе с тем, химическое строение подразумевает под собой не только известную последовательность атомов в молекуле, но и их определенное пространственное расположение. Развитие фармакологического эффекта зачастую обусловлено конформационными изменениями, вызванными влиянием молекулы лекарственного вещества на молекулярную мишень.
1. Введение……………………………………………………………………. 2
2. Молекулярные мишени биологически активных веществ в организме.. 4
3. Оптическая изомерия………………………………………………...........12
3.1. Общая характеристика ……………………………………………………12
3.2. Влияние оптической изомерии на биологическую активность………… 15
4. Геометрическая изомерия………………………………………………… 22
4.1. Общая характеристика…………………………………………………… 22
4.2. Влияние геометрической изомерии на биологическую активность……23
5. Заключение………………………………………………………………… 28
6. Литература…………………………………………………………………..30
Возможно также, что каждый энантиомер обладает своим специфическим действием. Так, левовращающий S-тироксин (лекарственное средство левотроид) — это природный гормон щитовидной железы. А правовращающий R-тироксин («декстроид») понижает содержание холестерина в крови. Некоторые производители придумывают для подобных случаев торговые названия-палиндромы, например «Darvon» для наркотического анальгетика и «Novrad» для противокашлевого препарата.
Как уже отмечалось на примере аминокислоты лейцина, человек — существо хиральное. И это относится не только к его внешнему виду. Энантиомерные ЛС, взаимодействуя с хиральными молекулами в организме, например с ферментами, могут действовать по-разному. «Правильное» лекарственное средство подходит к своему рецептору, как ключ к замку, и запускает желаемую биохимическую реакцию. Антиаритмическое средство S-анаприлин действует в сто раз сильнее, чем R-форма. У антигельминтного средства левамизола активен в основном в S-изомер, тогда как его R-антипод вызывает тошноту, поэтому в свое время рацемический левамизол был заменен одним из энантиомеров. В 60-е годы одним из предшественников адреналина в организме — диоксифенилаланином (L-ДОФА) пытались лечить паркинсонизм. При этом выяснилось, что это вещество, а также родственные ему дофамин и метилдофа эффективны только в виде S-изомера. В то же время R-ДОФА вызывает серьезные побочные эффекты, в том числе заболевание крови. Фирма «Merck» разработала способ производства гипотензивного препарата метилдофа, включающий самопроизвольную кристаллизацию только нужного энантиомера путем введения в раствор небольшой затравки этого изомера.
Пеницилламин (3,3-диметилцистеин) — довольно простое производное аминокислоты цистеина. Это вещество применяют при острых и хронических отравлениях медью, ртутью, свинцом, другими тяжелыми металлами, так как оно дает прочные комплексы с ионами этих металлов, и эти комплексы удаляются почками.
Применяют пеницилламин также при различных формах ревматоидного артрита, при системной склеродермии, в ряде других случаев. При этом применяют только S-форму препарата, так как R-изомер токсичен и может привести к слепоте. Недаром на обложке июньского номера американского журнала «Journal of Chemical Education» за 1996 год был помещен вот такой необычный рисунок. Название статьи о лекарственных средствах-антиподах было не менее красноречивым: «Когда молекула смотрится в зеркало» [17].
4.1. Общая характеристика
Стереоизомерами называют вещества, имеющие одинаковые химические формулы, молекулы которых различаются только расположением атомов друг относительно друга. В отличие от структурных изомеров, в молекулах стереоизомеров характер и последовательность химических связей совпадают. Важнейшими типами стереомеров являются цис-транс изомеры (E-Z-изомеры), энантиомеры, диастереомеры и конформеры. Последний случай относится к большим молекулам, например белкам, которые при одной и той же первичной структуре могут иметь различные конформации.
Цис-транс изомерия относится к расположению различных атомов или групп относительно выделенной связи, например двойной. В цис-изомере эти атомы находятся по одну сторону от выделенной связи, а в транс-изомере – по разные. Простейшим примером цис-транс изомерии являются соединения типа дихлорэтена (рисунок 10). В более сложных случаях для описания такого рода стереоизомерии используют предложенную ЮПАК номенклатуру: у Z-изомеров группы с наибольшими весами находятся по одну сторону связи, а у E-изомеров – по разные.
4.2. Влияние геометрической изомерии на биологическую активность
Цис-транс изомеры могут быть образованы и энантиомерами хиральных соединений. Важный пример – пептидная связь в белках, образованная остатками L-аминокислот. Эта связь имеет характер частично двойной связи, поэтому атомы скелета пептидной группы (–Cα–C′–N–Cα–) расположены в одной плоскости и группа может находиться либо в цис-, либо в транс-конформации (рисунок 11).
Хотя в развернутой полипептидной цепи происходит свободная изомеризация и пептидные группы принимают обе конформации, в нативном белке только одна из 1000 групп имеет цис-конформацию (остальные находятся в транс-конформации). Транс-конформация пептидных групп задается при их синтезе на рибосомах и сохраняется в дальнейшем. Однако если в состав пептидной группы входит остаток пролина (рисунок 12), что в обычных белках бывает редко, то соотношение транс/цис становится равным 3/1. Это значит, что в таком случае изомеризация происходит гораздо быстрее (хотя все равно очень медленно, с постоянной времени около 20, при комнатной температуре), чем в пептидной связи, образованной другими аминокислотными остатками.
При синтезе белка процесс
Не так давно было обнаружено, что цис-транс изомеризация не просто влияет на структуру белка, но такое изменение структуры может играть важную роль в регуляции биохимических процессов. Одним из важнейших нейромедиаторов, ответственных за регуляцию очень большого числа процессов у различных организмов – от нематоды до человека, – является серотонин (5-гидрокситриптамин, рисунок 13). У человека 80–90% серотонина обнаруживается в специальных клетках кишечника, где он используется для регуляции перистальтики. Остальная часть серотонина синтезируется в серотонергических нейронах в центральной нервной системе, где он участвует в регуляции аппетита, сна, хорошего настроения и агрессии. Кроме того, он стимулирует рост клеток, в частности в процессе восстановелния печени после повреждения, регулирует рост и рассасывание костей. Вырабатывается серотонин и у растений и грибов, его содержат некоторые овощи и фрукты.
Разнообразие регуляторных функций серотонина обусловлено наличием в разных клетках различных рецепторов серотонина, которые образуют так называемое суперсемейство серотониновых рецепторов (5-HT-рецепторов). Недостаточная или избыточная продукция серотонина приводит к различным психическим расстройствам. Так, при недостатке серотонина (или дефектах его рецепторов) у человека возникает депрессия. Поэтому многие лаборатории занимаются изучением серотониновой регуляции, в частности механизмов взаимодействия серотонина с различными рецепторами.
Все рецепторы серотонина, кроме 5-HT3, работают посредством активации G-белков, которые затем вызывают каскад биохимических реакций, приводящих к определенному результату. Рецептор 5-HT3 – единственный, который относится к типу управляемых ионных каналов (его ближайший структурный аналог – никотиновый рецептор ацетилхолина). Этот рецептор представляет собой белок, пять раз пронизывающий клеточную мембрану нервной клетки, в котором при связывании с серотонином образуется пора, пропускающая катионы натрия, калия и кальция. Прохождение ионов по открывшемуся каналу приводит к возбуждению нейрона и генерации нервного импульса.
Однако как открывается канал в мембране, было неизвестно. Недавно было установлено, что инициатором структурных перестроек в рецепторе 5-HT3 является изомеризация одного остатка пролина, находящегося в ключевом для этого типа рецепторов месте (вершина цистеиновой петли). Если пролин находится в транс-конформации, то канал закрыт. Связывание серотонина вызывает изомеризацию пролина, и канал открывается. Пожалуй, это первый случай, когда экспериментально показано, что переключение ионного канала между открытым и закрытым состояниями обусловлено стереоизомеризацией всего одного звена в полипептидной цепи [20].
Несмотря на меньшую (в сравнении с оптической изомерией) значимость цис-транс изомерии для фармации, надо признать, что свою нишу она, все же, имеет.
Ярким примером различий
в свойствах биологически активных соединений
в контексте геометрической изомерии
является линолевая кислота, представляющая
собой одноосновную карбоновую кислоту
с двумя изолированными связями - CH3(CH2)3-(CH2CH=CH)2(CH2)7COO
Рисунок 14. Линолевая кислота.
Линолевая кислота относится к семейству омега-6 полиненасыщенных жирных кислот и в организме осуществляет регуляцию свойств клеточных и субклеточных мембран. Примечательно то, что только цис-изомер линолевой кислоты может использоваться организмом для синтеза арахидоновой кислоты [21], в то время как транс-изомеры малоактивены и могут накапливаться в органах и тканях. Линолевая кислота входит во множество лекарственных средств и биологически активных добавок, реализуемых на территории Республики Беларусь. Так, например, линолевая кислота является одним из основных компонентов ЛС «Эссенциале» и «Эссенциале форте Н» (Санофи Авентис), «Эссенцикапс» (МинскИнтерКапс), «Акулайв» (Lysi HF), «Фосфоглиф» (Фармстандарт-Лексредства) и других.
Вместе с тем, далеко не всегда транс-изомеры жирных кислот являются индифферентными. В начале 90-х годов прошлого века появился ряд публикаций, указывающих на связь потребления транс-жиров и риском развития сердечно-сосудистых заболеваний [22, 23]. В дальнейшем ВОЗ рекомендовала сократить потребление транс-жиров до следовых количеств [24], так как появились сведения, подтверждающие влияние транс-изомеров жирных кислот на возникновение рака, диабета, болезни Альцгеймера и иных, не менее малоприятных заболеваний.
Однако, не только изомеры
естественного происхождения
Обсуждая вопросы
Подводя итоги, можно отметить, что пространственное строение лекарственного соединения во многом определяет его фармакологическую активность. Выраженность биологического эффекта и его направленность зависит от строения лиганда, взаимодействующего с молекулярной мишенью.
На современном этапе развития фармацевтической индустрии огромное внимание уделяется методам компьютерного конструирования лекарственных соединений, что диктуется как экономическими факторами (значительно сокращается время и стоимость разработки), так и этическими факторами - существующие алгоритмы позволяют предсказать возможную токсичность исследуемого соединения и предотвратить трагедии, аналогичные талидомидовой.
На мой взгляд, одним
из наиболее примечательных аспектов
влияния пространственного
Следующим любопытным фактом для меня было существование молекулярных дескрипторов строения – специальных математических параметров, которые могут обобщить пространственное расположение атомов до некоторой исчисляемой величины. Молекулярные дескрипторы в дальнейшем могут использоваться для построения моделей, в которые «закладываются» имеющиеся сведения относительно исследуемого соединения, а в качестве результата «получается» интересующий нас параметр – фармакологическая активность.
Изучение материалов при подготовке курсовой работы было очень интересным, пусть и сложным, ведь адекватное понимание действия лекарственных веществ невозможно без изучения тех механизмов, которые оказываются задействованы при его проникновении в организм. Было приятно узнать, что работы по получению новых лекарственных соединений ведутся не только в абстрактном «зарубежье», но и учеными из стран СНГ, а также Беларуси – в частности, НАН РБ долго и вполне успешно работает над проблемой молекулярного дизайна лигандов к ферментам микросомального окисления.
Так или иначе, проделанная работа показалась мне полезной, быть может не столько для моего профессионального роста как провизора-рецептара, сколько для формирования широкого кругозора и углубленного понимания роли фармацевтической химии как науки.
Информация о работе Молекулярные мишени биологически активных веществ в организме