Молекулярные мишени биологически активных веществ в организме

Автор работы: Пользователь скрыл имя, 14 Ноября 2013 в 19:29, курсовая работа

Краткое описание

Фармакологическая активность целиком и полностью определяется строением лекарственного вещества. Вместе с тем, химическое строение подразумевает под собой не только известную последовательность атомов в молекуле, но и их определенное пространственное расположение. Развитие фармакологического эффекта зачастую обусловлено конформационными изменениями, вызванными влиянием молекулы лекарственного вещества на молекулярную мишень.

Содержание

1. Введение……………………………………………………………………. 2
2. Молекулярные мишени биологически активных веществ в организме.. 4
3. Оптическая изомерия………………………………………………...........12
3.1. Общая характеристика ……………………………………………………12
3.2. Влияние оптической изомерии на биологическую активность………… 15
4. Геометрическая изомерия………………………………………………… 22
4.1. Общая характеристика…………………………………………………… 22
4.2. Влияние геометрической изомерии на биологическую активность……23
5. Заключение………………………………………………………………… 28
6. Литература…………………………………………………………………..30

Прикрепленные файлы: 1 файл

Kursach_FINAL_dubl_dva.doc

— 1,007.50 Кб (Скачать документ)

Оглавление

 

1. Введение……………………………………………………………………. 2

2. Молекулярные мишени биологически активных веществ в организме.. 4

3. Оптическая изомерия………………………………………………...........12

3.1.   Общая характеристика ……………………………………………………12

3.2. Влияние оптической изомерии на биологическую активность………… 15

4. Геометрическая изомерия………………………………………………… 22

4.1.   Общая характеристика……………………………………………………  22

4.2.    Влияние геометрической изомерии на биологическую активность……23

5. Заключение………………………………………………………………… 28

6.    Литература…………………………………………………………………..30

 

  1. Введение

Фармакологическая активность целиком и полностью определяется строением лекарственного вещества. Вместе с тем, химическое строение подразумевает под собой не только известную последовательность атомов в молекуле, но и их определенное пространственное расположение. Развитие фармакологического эффекта зачастую обусловлено конформационными изменениями, вызванными влиянием молекулы лекарственного вещества на молекулярную мишень. Активация или ингибирование функции рецепторов, трансмембранных каналов и ферментов находятся под управлением лигандов - специфических соединений, имеющих определенное сродство к соответствующим биологическим структурам. Очевидно, что интенсивность фармакологического эффекта обусловлена комплементарностью взаимодействия, полнота которого подразумевает не только требуемое расположение радикалов, но и форму молекулы, что объясняется необходимостью проникновения к активному центру молекулярной мишени.

Форма молекулы, расположение заряженных и неполярных радикалов детерминирует проникновение через мембраны клеток, ГЭБ и ГМБ, силу и продолжительность действия, а также скорость элиминации из системного кровотока.

Если рассматривать  важность пространственного строения для фармацевтической химии, можно отметить, что направленное формирование структуры лекарственного соединения должным образом может улучшить его терапевтический профиль, увеличивая продолжительность действия или нивелируя побочные эффекты. Введение в молекулу гидрофобных фрагментов, например линейных алкильных «якорей» может увеличить сродство соединения к мембранам и возможность проникать соединения в клетку, что было продемонстрировано на примере т.н. «ионов Сукачева».

Введение «якорей» может  также способствовать пролонгации действия лекарственного соединения, что обеспечивается повышением депонирования в жировой ткани и снижением метаболизма в печени и почках. Азатиоприн является пролекарством для 6-меркаптопурина, неспецифического цитостатика. В организме азатиоприн медленно метаболизируется с образованием 6-меркаптопурина, что, в конечном итоге, приводит к пролонгации действия.

Модификация молекулы может  использоваться и для коррекции  органолептических показателей, так, например, левомицетина стеарат, гидролизующийся в пищеверительном тракте до левомицетина, не обладает обжигающе-горьким вкусом, что позволяет сохранять изначальную фармакологическую активность при улучшении вкусовых характеристик.

Многие лекарственные  средства, используемые в настоящее время на рынке, прошли долгий путь от изначальной задумки до конечной реализации, в ходе которого преследовалось увеличение целевой активности и снижение частоты и выраженности побочных эффектов, повышение стабильности и времени действия. Пространственное строение целиком и полностью определяет судьбу лекарственного средства в организме - возможность связывания его с молекулярными мишенями, возможность «избежать» нежелательных биотрансформаций, и, напротив, участвовать в необходимых превращениях.

 

  1. Молекулярные мишени биологически активных веществ в организме

Молекулярная мишень — это молекула или молекулярный ансамбль, имеющий специфический центр связывания для биологически активного соединения. Молекулярная мишень может быть представлена мембранными белками, распознающими гормоны или нейротрансмиттеры (рецепторы), а также ионными каналами, нуклеиновыми кислотами, молекулами-переносчиками или ферментами. Как видно из Рисунка 2, не все лекарственные соединения воздействуют на рецепторы. Большинство лекарственных средств должны связаться с молекулярной мишенью, чтобы произвести эффект, но существуют и исключения. Уже в первых исследованиях эффектов лекарств на тканях животных в конце XIX в. стало ясно, что большинство ФАВ реализуют специфическое действие в определенных тканях, т.е. соединение, которое оказывает эффект на один тип ткани, может не влиять на другой; одно и то же вещество может оказывать совершенно разные эффекты на разные ткани. Например, алкалоид пилокарпин, как и нейротрансмиттер ацетилхолин, вызывает сокращение гладких мышц кишечника и тормозит частоту сердечных сокращений. С учетом этих феноменов Сэмуэль Лэнгли (1852-1925) в 1878 г., основываясь на изучении эффектов алкалоидов пилокарпина и атропина на слюноотделение, предположил, что «существуют некие рецепторные вещества... с которыми оба могут образовывать соединения». Позже, в 1905 г., изучая действие никотина и кураре на скелетные мышцы, он обнаружил, что никотин вызывает сокращения, когда действует на определенные небольшие участки мышц. Лэнгли заключил, что «рецепторная субстанция» для никотина находится в этих участках и что кураре действует путем блокады взаимодействия никотина с рецептором [4].

Таким образом, очевидно, что действие некоторых соединение может быть обусловлено не столько развитием биологического ответа на связывание с молекулярной мишенью, сколько препятствием связыванию эндогенного лиганда. Действительно, если рассматривать взаимодействие лиганда и рецептора, можно отметить, что существующие в настоящее время лекарственные соединения могут играть роль как агониста, так и антагониста. На Рисунке 3 можно увидеть более подробную классификацию лигандов по отношению к эффектам, ими обусловленными. Агонисты различаются по силе и направлению физиологического ответа, вызываемого ими. Данная классификация не связана с аффинностью лигандов и опирается лишь на величину отклика рецептора. Таким образом, можно выделить следующие классы агонистов:

  • Суперагонист — соединение, способное вызывать более сильный физиологический ответ, чем эндогенный агонист.
  • Полный агонист — соединение, вызывающее такой же отклик, как эндогенный агонист (например, изопреналин, агонист β-адренорецепторов).
  • В случае меньшего отклика соединение называют частичным агонистом (например, арипипразол — частичный агонист дофаминовых и серотониновых рецепторов).
  • В случае если у рецептора имеется базальная (конститутивная) активность, некоторые вещества — обратные агонисты — могут уменьшать её. В частности, обратные агонисты рецепторов ГАМКA обладают анксиогенным или спазмогеннымдействием, однако могут усиливать когнитивные способности [6].

Рассматривая механизм связывания лиганда и рецепторной  молекулы, можно увидеть, что специфичность и сила связывания обусловлена особенностями строения обоих компонентов. В частности, важную роль играет активный центр белков - определённый участок белковой молекулы, как правило, находящийся в её углублении ("кармане"), сформированный радикалами аминокислот, собранных на определённом пространственном участке при формировании третичной структуры и способный комплементарно связываться с лигандом. В линейной последовательности полипептидной цепи радикалы, формирующие активный центр, могут находиться на значительном расстоянии друг от друга.

Высокая специфичность связывания белка с лигандом обеспечивается комплементарностью структуры активного центра белка структуре лиганда. Под комплементарностью понимают пространственное и химическое соответствие взаимодействующих молекул. Лиганд должен обладать способностью входить и пространственно совпадать с конформацией активного центра. Это совпадение может быть неполным, но благодаря конформационной лабильности белка активный центр способен к небольшим изменениям и "подгоняется" под лиганд. Кроме того, между функциональными группами лиганда и радикалами аминокислот, образующих активный центр, должны возникать связи, удерживающие лиганд в активном центре. Связи между лигандом и активным центром белка могут быть как нековалентными (ионными, водородными, гидрофобными), так и ковалентными. Активный центр белка - относительно изолированный от окружающей белок среды участок, сформированный аминокислотными остатками. В этом участке каждый остаток благодаря своему индивидуальному размеру и функциональным группам формирует "рельеф" активного центра.

Объединение таких аминокислот в единый функциональный комплекс изменяет реакционную способность их радикалов, подобно тому, как меняется звучание музыкального инструмента в ансамбле. Поэтому аминокислотные остатки, входящие в состав активного центра, часто называют "ансамблем" аминокислот.

Уникальные свойства активного центра зависят не только от химических свойств формирующих  его аминокислот, но и от их точной взаимной ориентации в пространстве. Поэтому даже незначительные нарушения общей конформации белка в результате точечных изменений его первичной структуры или условий окружающей среды могут привести к изменению химических и функциональных свойств радикалов, формирующих активный центр, нарушать связывание белка с лигандом и его функцию. При денатурации активный центр белков разрушается, и происходит утрата их биологической активности.

Часто активный центр  формируется таким образом, что  доступ воды к функциональным группам его радикалов ограничен, т.е. создаются условия для связывания лиганда с радикалами аминокислот.

В некоторых случаях  лиганд присоединяется только к одному из атомов, обладающему определённой реакционной способностью, например присоединение О2 к железу миоглобина или гемоглобина. Однако свойства данного атома избирательно взаимодействовать с О2 определяются свойствами радикалов, окружающих атом железа в составе тема. Гем содержится и в других белках, таких как цитохромы. Однако функция атома железа в цитохромах иная, он служит посредником для передачи электронов от одного вещества другому, при этом железо становится то двух-, то трёхвалентным.

Центр связывания белка  с лигандом часто располагается  между доменами. Например, протеолитический фермент трипсин, участвующий в  гидролизе пептидных связей пищевых белков в кишечнике, имеет 2 домена, разделённых бороздкой. Внутренняя поверхность бороздки формируется аминокислотными радикалами этих доменов, стоящими в полипептидной цепи далеко друг от друга (Сер177, Гис40, Асп85).

Разные домены в белке  могут перемещаться друг относительно друга при взаимодействии с лигандом, что облегчает дальнейшее функционирование белка. В качестве примера можно рассмотреть работу гексокиназы, фермента, катализирующего перенос фосфорного остатка с АТФ на молекулу глюкозы (при её фосфорилировании). Активный центр гексокиназы располагается в расщелине между двумя доменами. При связывании гексокиназы с глюкозой окружающие её домены сближаются, и субстрат оказывается в "ловушке", что облегчает его дальнейшее фосфорилирование.

Основное свойство белков, лежащее в основе их функций, - избирательность присоединения к определённым участкам белковой молекулы специфических лигандов.

Классификация лигандов

  • Лигандами могут быть неорганические (часто ионы металлов) и органические вещества, низкомолекулярные и высокомолекулярные вещества;
  • существуют лиганды, которые изменяют свою химическую структуру при присоединении к активному центру белка (изменения субстрата в активном центре фермента);
  • существуют лиганды, присоединяющиеся к белку только в момент функционирования (например, О2, транспортируемый гемоглобином), и лиганды, постоянно связанные с белком, выполняющие вспомогательную роль при функционировании белков (например, железо, входящее в состав гемоглобина).

В тех случаях, когда  аминокислотные остатки, формирующие  активный центр, не могут обеспечить функционирование данного белка, к определённым участкам активного центра могут присоединяться небелковые молекулы. Так, в активном центре многих ферментов присутствует ион металла (кофактор) или органическая небелковая молекула (кофермент). Небелковую часть, прочно связанную с активным центром белка и необходимую для его функционирования, называют"простатическая группа". Миоглобин, гемоглобин и цитохромы имеют в активном центре простетическую группу - гем, содержащий железо.

Соединение протомеров в олигомерном белке - пример взаимодействия высокомолекулярных лигандов. Каждый протомер, соединённый с другими протомерами, служит для них лигандом, так же как они для него.

Иногда присоединение  какого-либо лиганда изменяет конформацию белка, в результате чего формируется центр связывания с другими лигандами. Например, белок кальмодулин после связывания с четырьмя ионами Са2+ в специфических участках приобретает способность взаимодействовать с некоторыми ферментами, меняя их активность [7].


Важным понятием в теории взаимодействия лиганда и активного центра биологической мишени является «комплементарность». Активный центр фермента должен определенным образом соответствовать лиганду, что отражается в некоторых требованиях, предъявляемых к субстрату. Так, например, ожидаемо, что для успешного взаимодействия необходимо соответствие размеров активного центра и лиганда (см. 2 положение на рисунке 3), что позволяет повысить специфичность взаимодействия и оградить активный центр от заведомо неподходящих субстратов. Вместе с тем, при возникновении комплекса «активный центр-лиганд» возможны следующие виды взаимодействий:

Информация о работе Молекулярные мишени биологически активных веществ в организме