Молекулярные мишени биологически активных веществ в организме

Автор работы: Пользователь скрыл имя, 14 Ноября 2013 в 19:29, курсовая работа

Краткое описание

Фармакологическая активность целиком и полностью определяется строением лекарственного вещества. Вместе с тем, химическое строение подразумевает под собой не только известную последовательность атомов в молекуле, но и их определенное пространственное расположение. Развитие фармакологического эффекта зачастую обусловлено конформационными изменениями, вызванными влиянием молекулы лекарственного вещества на молекулярную мишень.

Содержание

1. Введение……………………………………………………………………. 2
2. Молекулярные мишени биологически активных веществ в организме.. 4
3. Оптическая изомерия………………………………………………...........12
3.1. Общая характеристика ……………………………………………………12
3.2. Влияние оптической изомерии на биологическую активность………… 15
4. Геометрическая изомерия………………………………………………… 22
4.1. Общая характеристика…………………………………………………… 22
4.2. Влияние геометрической изомерии на биологическую активность……23
5. Заключение………………………………………………………………… 28
6. Литература…………………………………………………………………..30

Прикрепленные файлы: 1 файл

Kursach_FINAL_dubl_dva.doc

— 1,007.50 Кб (Скачать документ)
  • вандерваальсовы связи (положение 1, рисунок 3), обусловленые флуктуациями электронных облаков вокруг противоположно поляризованных соседних атомов;
  • электростатические взаимодействия (положение 3, рисунок 3), возникающие между противоположно заряженными группами;
  • гидрофобные взаимодействия (положение 4, рисунок 3), обусловленные взаимным притяжением неполярных поверхностей;
  • водородные связи (положение 5, рисунок 3), возникающие между подвижным атомом водорода и электроотрицательными атомами фтора, азота или кислорода.

Несмотря на относительно малую силу описанных взаимодействий (в сравнении с ковалентными связями), не стоит недооценивать их важность, отражающуюся в повышении аффинности связывания.

Обобщая вышесказанное, можно отметить, что процесс связывания лиганда и молекулярной мишени представляет собой высокоспецифический процесс, контролируемый как размером лиганда, так и его строением, что позволяет обеспечить селективность взаимодействия. Тем не менее, возможно взаимодействие между белком и не свойственным ему субстратом (т.н. конкурентное ингибирование), которое выражается в связывании с активного центра со схожим, но не целевым лигандом. Стоит отметить, что конкурентное ингибирование возможно как в естественных условиях (ингибирование малонатом фермента сукцинатдегидрогеназы, ингибирование фумаратгидратазы пиромеллитовой кислотой [8]), так и искусственно, во время приема лекарственных средств (ингибирование моноаминооксидазы ипрониазидом, ниаламидом, ингибирование дигидроптероатсинтетазы сульфаниламидами – структурными аналогами пара-аминобензойной кислоты, ингибирование ангиотензинпревращающего фермента каптоприлом, эналаприлом).

Таким образом, существует возможность целенаправленного изменения активности многих молекулярных систем при помощи синтетических соединений, имеющих строение, схожее с естественными субстратами.

Тем не менее, поверхностное  понимание механизмов взаимодействия лигандов и молекулярных мишеней может быть чрезвычайно опасно и, зачастую, приводить к трагическим последствиям. Наиболее известным случаем можно считать т.н. «талидомидовую трагедию», которая привела вследствие приема беременными женщинами недостаточно изученного лекарственного соединения талидомида к рождение тысяч детей с врожденными уродставми.

 

  1. Оптическая изомерия

    1. Общая характеристика

Оптическая изомерия наблюдается у веществ, проявляющих  оптическую активность, то есть способных вращать плоскополяризованный световой луч. Вещества, отклоняющие плоскость поляризации луча вправо, называются правовращающими, влево - левовращающими. Для того чтобы вещество было оптически активным, требуется выполнение единственного условия - молекула не должна иметь ни центра, ни плоскости симметрии. В простейшем случае это определяется наличием в молекуле так называемого асимметрического (хирального) атома. Существуют оптически активные молекулы и без асимметрического атома углерода, однако мы их рассматривать не будем. Термин "хиральность" происходит от английского слова "chirality" (от греч. ceir - рука), предложенного Кельвином в конце XIX века [18].


Талидомид (рисунок 4) представляет собой печально известное лекарственное средство для лечения бессонницы, применявшееся в странах Европы для седации у беременных женщин в период с 1956 по 1962 гг, в результате чего были рождены от 8000 до 12000 тысяч детей с уродствами. Несмотря на то, что механизм действия R-изомера, отвечающего за снотворный эффект неизвестен, причина тератогенности S-изомера в некоторой степени ясна – встраивание молекулы S-талидомида между Г-Ц связями ДНК приводит к нарушению процесса репликации и последующему аномальному развитию плода [9]. На первый взгляд, может быть недостаточно очевидно, почему молекулы, имеющие одинаковый порядок атомов в своем составе, оказывают различный биологический эффект, поэтому проиллюстрируем дальнейшее рассуждение.


Вопреки тому, что молекулы аминокислот, приведенных на рисунке 5, имеют идентичную последовательность атомов, они, тем не менее, являются разными веществами, что выражается в невозможности сопоставления их пространственных моделей, что обусловлено наличием тетраэдрического центра асимметрии – атома углерода, имеющего четыре различных заместителя.

Очевидно, что в данном случае лишь одна из молекул энантиомеров может быть лигандом для активного центра молекулярной мишени (рисунок 6), так как вторая молекула энантиомера не будет взаимодействовать с соответствующими участками связывания.


Действительно, огромное число молекулярных структур человеческого организма обладает сродством к молекулам с определенной хиральностью. Так, в природе преобладают аминокислоты и сахариды только одной конфигурации, а образование их антиподов подавлено. L-аминокислоты являются естественными для человеческого организма, в то время как D-аминокислоты ускоренно метаболизируются при помощи D-оксидаз. В некоторых случаях разные энантиомеры можно различить и без всяких приборов — когда они по-разному взаимодействует с асимметрическими рецепторами в нашем организме. Яркий пример — аминокислота лейцин: ее правовращающий изомер сладкий, а левовращающий — горький. Немного отдалившись от темы курсовой работы можно также добавить, что (+)-энантиомер нооткатона имеет в 2200 раз более интенсивный горький грейпфрутовый вкус и характерный запах, чем (-)-энантиомер, а природный (3S, 3aS, 7aR)-изомер винного лактона имеет в 25000000 более интенсивный сладкий запах с кокосовым оттенком, чем соответствующий (3R, 3aR, 7aS)-изомер [11].

 

    1. Влияние оптической изомерии на биологическую активность

Феномен хиральности (стереоизомерия) столь обычен в биологии, что больше половины всех лекарственных соединений являются хиральными молекулами, т. е. имеют пары энантиомеров.

Часто один из энантиомеров (эвтомер) значительно более активен по сравнению с другим, действующим слабее или не действующим вообще (дистомер). Отношение активности эвтомера к дистомеру называется эвдисмическим и является мерой стереоизбирательности данного соединения. Чем больше данное отношение, тем сильнее биологическая активность лишь одного оптического изомера. Особенно отчетливо это видно тогда, когда центр оптической асимметрии находится в том месте молекулы, которое отвечает за ее взаимодействие с рецептором (так называемое правило Пфейффера) [19].

Изучение активности стереоизомеров на изолированных тканях исключает влияние проникновения и распределения и позволяет оценить эффективность стереоизомерных веществ в их реакции с рецептором. Взаимодействие асимметричной, достаточно сложной молекулы лекарственного вещества с еще более сложной структурой активного центра рецептора, осуществляемое по типу ключ-замок, определяется, несомненно, их контактом в целом ряде точек. При этом в структурах вещества и рецептора могут существовать как точки связи, так и точки взаимного отталкивания. Очевидно, что существование первых обусловливает сродство вещества к рецептору. Наличие вторых может влиять на сродство, поскольку взаимное отталкивание каких-то групп вещества и рецептора может способствовать специфическому изменению конформации последнего.

Если представить себе, что основные силы взаимодействия асимметрично построенной  молекулы лекарственного вещества с  активным участком рецептора (или фермента) сосредоточены минимум в трех точках, то два оптических антипода вещества могут одинаково ориентировать в отношении данной поверхности только две из трех групп, участвующих в процессе.

Различная ориентация третьей группы лучше всего может объяснить  различие в биологической активности оптических изомеров, причем в зависимости от степени участия этой группы в процессе взаимодействия с рецептором влияние оптической изомерии будет выражено в большей или меньшей степени.

Если вещество взаимодействует  с рецептором лишь в двух точках, то разницы в биологической активности его оптических изомеров ожидать не приходится. Однако если третья группа в одном изомере пространственно препятствует контакту вещества с рецептором в двух других точках, то и в этом случае различие между оптическими антиподами должно иметь место. Например, из двух оптических изомеров адреналина только у одного все три группы ориентированы таким образом, что они могут соединяться с соответствующими группами рецептора. В этом случае будет наблюдаться максимальная фармакологическая активность, соответствующая D-(-)-адреналину. У L-(+)-адреналина спиртовая гидроксильная группа ориентирована неправильно по отношению к поверхности рецептора, и данная молекула может взаимодействовать с рецептором только в двух точках. Поэтому природный D-(-)-адреналин обладает в десятки раз большей фармакологической активностью, чем синтезированный искусственно L-(+)-изомер [18].

Биологически активное вещество с двумя асимметричными центрами имеют четыре диастереомера, как например α-блокатор лабеталол. В большинстве случаев один из этих энантиомеров будет более эффективен, чем его зеркальный энантиомер, что связано с лучшей «подгонкой» к рецепторной молекуле. Например, 5(+)-энантиомер парасимпатомиметического лекарственного средства метахолина более чем в 250 раз активнее R(-)-энантиомера. Если представить рецептор в виде перчатки, в которую должна войти молекула лиганда, чтобы вызвать эффект, становится ясно, почему «левосторонние» лиганды будут более эффективны при связывании с рецептором для «левой руки», чем их «правосторонние» энантиомеры.

Более активный энантиомер для одного типа рецепторов может быть менее активным для другого типа рецепторов, например для рецепторов, ответственных за некоторые нежелательные эффекты. Карведилол — лекарство, взаимодействующее с адренорецепторами, имеет один хиральный центр и, следовательно, два энантиомера. Один из этих энантиомеров, 5(-)-изомер, является активным β-блокатором. R(+)-изомер в 100 раз слабее действует на рецептор. Кетамин относится к внутривенным анестетикам. Его (+)-энантиомер — более активный и менее токсичный анестетик, чем (-)-энантиомер. Тем не менее в качестве лекарственного средства до сих пор используют рацемическую смесь.

Наконец, в связи с тем, что  ферменты обычно стереоселективны, один энантиомер часто имеет большее  сродство к ферменту, метаболизирующему лекарственное вещество, чем другой. В результате энантимомеры могут весьма отличаться друг от друга по длительности действия.

К сожалению, большинство  исследований клинической эффективности  и элиминации лекарственных соединений у человека выполнено с применением рацемических смесей лекарств, а не их раздельных энантиомеров. В настоящее время только около 45 % хиральных ЛС, используемых в клинике, доступны как активные энантиомеры — остальные продаются только как рацемические смеси. В результате многие больные получают дозы веществ, которые на 50 % или более неактивны или даже токсичны. Однако отмечается повышение интереса, как на научном, так и на законодательном уровнях, к производству хиральных ЛС в виде их активных энантиомеров.

Тем не менее, ряд соединений присутствует на современном фармацевтическом рынке Республики Беларусь в качестве рацематов.

Рисунок 7. S- и R-изомеры ибупрофена.

Так, например, широкораспространенное нестероидное противовоспалительное лекарственное средство ибупрофен (рисунок 7) присутствует в смеси двух изомеров, один из которых ((S)-(+)-ибупрофен) обладает целевой активностью и проявляет себя как анальгетик, антипиретик и оказывает противовосполительное действие, в то время как R-изомер токсичен и может накапливаться в жировых отложения в виде эфира с глицерином. В связи с этим стало коммерчески доступно аналогичное лекарственное средство, представляющее собой энантиомерно чистый (S)-(+)-ибупрофен, т. н. дексибупрофен. В ходе дальнейших исследований было обнаружено, что в организме человека присутствует изомераза, способная превращать неактивный (R)-(–)-ибупрофен в активный (S)-(+)-ибупрофен [10].

Рисунок 8. R- и S-изомеры напроксена.

Напроксен – нестероидное противовоспалительное лекарственное  средство, производное пропионовой  кислоты, также присутствует на рынке  в виде рацемической смеси, несмотря на то, что только S-изомер обладает терапевтической активностью, а R-изомер имеет ярко выраженную гепатотоксичность [11].

S-амлодипин уже более 20 лет используется в лечении артериальной гипертензии (АГ) и стенокардии, в то время как большинство амлодипинсодержащих лекарственных средств представлены рацемической смесью его S- и R-энантиомеров. Установлено, что способность блокировать медленные каналы L-типа в гладкомышечных клетках сосудов, лежащая в основе терапевтического действия данного препарата, присуща только его S-энантиомеру, в то время как его R-энантиомер в этом плане в 1000 раз менее активен, то есть практически лишен таких свойств [12]. В то же время R-изомер не является фармакологически инертным, поскольку, в отличие от S-изомера, способен стимулировать синтез NO эндотелиальными клетками через кининзависимый механизм [13]. Установлено, что чрезмерная дилатация прекапиллярно-артериолярного звена сосудов нижних конечностей, обусловленная избыточным образованием NO, нивелирует реализацию важного физиологического механизма, предупреждающего развитие отеков тканей нижних конечностей при нахождении тела в вертикальном положении – так называемого прекапиллярного постурального вазоконстрикторного рефлекса [14]. Именно это обстоятельство лежит в основе побочного действия традиционного рацемического амлодипина в виде периферических отеков, развивающихся в дозозависимом порядке по различным данным у 9-32% получающих его пациентов, чаще пожилых [15]. В сравнительном рандомизированном исследовании S-амлодипина и оригинального рацемического амлодипина, выполненном в Украине, частота отеков на фоне 12-недельного лечения в вышеуказанных группах составила 1,6 и 7,8% соответственно, то есть терапия асомексом (торговая марка S-амлодипина, производимая Actavis Group) снижала риск их возникновения в 4,8 раза [16]. Частота появления периферических отеков на фоне лечения S-амлодипином в двух крупных постмаркетинговых исследованиях составила всего 0,75% (14 из 1859 наблюдавшихся) и 0,84% (14 из 1669). При этом по данным 4-недельного наблюдения, антигипертензивная активность S-амлодипина в дозах 2,5 и 5 мг/сут оказалась эквивалентной таковой для амлодипина-рацемата, принимаемого вдвое большими суточными дозами – 5 и 10 мг.

Тем не менее, некоторые лекарственные средства выпускаются в виде оптически чистых соединений. Их получают тремя методами: разделением рацемических смесей, модификацией природных оптически активных соединений (к ним относятся углеводы, аминокислоты, терпены, молочная и винная кислоты и др.) и прямым синтезом. Последний также требует хиральных источников, поскольку любые другие традиционные методы синтеза дают рацемат. Это одна из причин высокой стоимости некоторых ЛС, и не удивительно, что из множества синтетических хиральных препаратов, выпускаемых во всем мире, лишь небольшую часть составляют оптически чистые, остальные — рацематы.

Информация о работе Молекулярные мишени биологически активных веществ в организме