Лекции по "Общей химии"

Автор работы: Пользователь скрыл имя, 12 Сентября 2013 в 23:16, курс лекций

Краткое описание

Основными классами неорганических соединений являются оксиды, кислоты, соли и основания.
Оксиды представляют собой соединения элементов с кислородом. Оксиды подразделяют на солеобразующие и несолеобразующие. Солеобразующие оксиды делят на основные (образуют соли с кислотами), кислотные (образуют соли с основаниями) и амфотерные (образуют соли как с кислотами, так и с основаниями). Основным оксидам отвечают основания, кислотным – кислоты, а амфотерным – гидраты, которые проявляют как кислотные, так и амфотерные свойства. Кислотные оксиды представляют собой ангидриды кислот (SO2 – серный ангидрид, N2O5 – азотный ангидрид).

Содержание

Основные классы химических соединений, номенклатура.
3
Основные законы общей химии. Стехиометрия. Химический эквивалент.
5
Газовые законы. Основные газовые процессы.
7
Строение атома.
9
Строение атома (заключение). Химическая связь. Основные типы химической связи.
12
Периодический закон и периодическая система элементов Д.И. Менделеева.
16
Основы термодинамики. I,II и III начало термодинамики.
18
Основы термодинамических расчетов.
21
Химическая кинетика и химическое равновесие.
23
Теория электролитической диссоциации. Электролиты.
26
Водородный показатель кислотности и щелочности водных растворов. Растворимость.
28
Гидролиз солей.
32
Окислительно-восстановительные реакции.
34
Растворы. Способы выражения их концентрации.
37
Классификация растворов. Коллигативные свойства растворов.
40
Основы химии промышленных взрывчатых веществ.
42
Расчеты кислородных балансов ВВ и тепловых эффектов реакций взрыва.
45

Прикрепленные файлы: 1 файл

Химия лекции.doc

— 578.50 Кб (Скачать документ)

 

4. Моляльная концентрация (моляльность) - число молей растворенного вещества nв, содержащихся в 1кг растворителя ( =1кг=1000г):

Сm=m=

[моль/кг или моль/1000 г].

Пример: 1m водный раствор H2SO4 содержит в каждом килограмме воды 1моль Н2SO4 (или 98 г Н2SO4).

Этот способ выражения  концентрации широко применяется в  теории растворов, особенно растворов  электролитов, ввиду его независимости  от температуры и возможности  приготовления растворов с высокой   точностью выражения концентрации. По этим причинам все современные справочники по растворам электролитов обычно используют моляльный способ выражения концентрации. Вся стандартизация электродных потенциалов, рН, активностей, растворимостей и других термодинамических свойств растворов приведена к единице моляльности. К недостаткам способа относится необходимость пересчета количества вещества, приходящегося на 1 кг растворителя, на массу или объем всего раствора.

 

5. Мольная доля – отношение числа молей растворенного вещества nв к общему количеству молей раствора nS:

Np=

, где nS=nв+nа, где nа – число молей растворителя.

Пример: водный раствор H2SO4 с молярной долей 0,2 содержит 1 моль Н2SO4 и 4 моль H2O.

Этот способ выражения  концентрации широко распространен  в физической химии, так как прямо указывает на концентрацию частиц компонента в смеси частиц, независимо от природы и массы самих частиц. К недостаткам метода следует отнести крайне низкие численные значения ввиду обычно наблюдающегося огромного избытка легких молекул растворителя в практической области концентраций, а также неудобство при практическом применении, связанное с необходимостью пересчета в единицы массы через соответствующие молекулярные  массы.

 

Лекция №15: Классификация растворов. Коллигативные свойства растворов.

 

1. Идеальные растворы. Физической моделью идеального раствора   является совокупность невзаимодействующих частиц, имеющая объем, аддитивно складывающийся из объемов отдельных компонентов. Наиболее важными свойствами идеальных растворов являются: а) Идеальные растворы образуются из чистых компонентов, находящихся в том же агрегатном состоянии, что и раствор, атермально, т.е. без теплового эффекта. б) Объем идеального раствора, образованного из чистых компонентов, находящихся в том же агрегатном состоянии, что и раствор,  аддитивно складывается из объемов отдельных компонентов. Основное назначение концепции идеальных растворов – служить эталоном, с которым сравниваются реальные растворы. Все свойства идеальных растворов, в отличие от реальных, легко рассчитываются исходя только из их концентрации и свойств отдельных компонентов.

 

2. Предельно разбавленные растворы. Предельно разбавленным (п.р.) раствором называют раствор, в котором свойства растворителя практически остались неизменными по сравнению с чистым растворителем ввиду низкой концентрации раствора, в то время как свойства растворенного вещества могут очень сильно отличаться от его свойств в чистом виде ввиду попадания в среду растворителя. Свойствами п.р. растворов обладают обычно все разбавленные растворы вплоть до определенной концентрации, характерной для каждой системы. Чем ближе свойства компонентов, тем до более высокой концентрации сохраняют их растворы свойства п.р. растворов. Для растворов электролитов этот предел очень низок, так как ионы заметно изменяют свойства растворителя уже при миллимолярных концентрациях.

 

3. Реальные растворы. Различные свойства реальных растворов в той или иной степени отклоняются от идеальных (например, термодинамические). Для адекватного описания этих отклонений обычно требуются различные физические модели, учитывающие межчастичные парные и коллективные взаимодействия, размеры частиц, расстояния между ними и т.д. В некоторых простейших случаях такие модели приводят к результатам, хорошо совпадающим с экспериментом. Однако наиболее универсальный и полностью формальный способ учета неидеальности компонентов раствора был предложен Г. Льюисом в 1907 г., который сохранил ту же форму выражения химического потенциала компонента в реальном растворе, что и в идеальном, но вместо концентрации компонента использовал в нем активности.

По концентрации растворенного  вещества растворы можно подразделить на концентрированные (с большой концентрацией растворенного вещества) и разбавленные (с малой концентрацией растворенного вещества).

 

Важное значение при  описании свойств растворов имеет закон Генри: «Масса газа, растворяющегося при постоянной температуре в данном объёме жидкости, прямо пропорциональна парциальному давлению газа». Математически это можно записать так: С=k·р, где k – константа Генри, С – массовая концентрация газа в насыщенном растворе. Важнейшим следствием этого закона является то, что объём газа, растворяющегося при постоянной температуре в данном объёме жидкости, не зависит от его парциального давления.

 

Коллигативными свойствами раствора называются свойства, зависящие от концентрации частиц растворенного вещества и мало или совсем не зависящие от природы растворителя. К таким свойствам относят:

  • давление насыщенного пара растворителя;
  • понижение температуры замерзания раствора;
  • повышение температуры кипения раствора;
  • осмотическое давление.

 

1. Давление насыщенного пара растворителя. Под давлением насыщенного пара вещества понимают давление его паров в отсутствие других газов, в частности воздуха. Относительное понижение давления пара над раствором равно:

, где р0 – давление насыщенного пара растворителя над чистым растворителем; р - давление насыщенного пара растворителя над раствором; Nв – мольная доля растворенного вещества. Это уравнение является математической формулировкой закона Рауля: «относительное понижение давления насыщенного пара над раствором равно мольной доле растворенного вещества». Явление понижения давления насыщенного пара над раствором вытекает из принципа Ле Шателье.

 

2. Осмотическое давление. Осмотическое давление - это такое давление, которое нужно приложить к раствору, отделенному от растворителя полупроницаемой перегородкой, чтобы наступило состояние равновесия. Процесс осмоса, в свою очередь, характеризуется самопроизвольным проникновением молекул растворителя через полупроницаемые перегородки.

В 1886 г. Вант-Гофф cформулировал закон (закон Вант-Гоффа), согласно которому «в разбавленном растворе растворенное вещество ведет себя подобно идеальному газу» и показал, что для растворов неэлектролитов невысоких концентраций осмотическое давление Рос равно:

Рос=С·R·Т=103·(m/M)·RT, где С= – молярность, моль/м3; R=8,31 Дж/(моль·К) – универсальная газовая постоянная; Т – абсолютная температура раствора, К.

Для растворов электролитов величина Рос составляет:

Рос=i·С·R·Т,

где i – изотонический коэффициент, показывающий, во сколько раз осмотическое давление данного раствора выше нормального. Для каждого раствора этот коэффициент определяется экспериментально.

 

3. Понижение температуры замерзания раствора (криоскопия). Из всех коллигативных свойств чаще других используются криоскопические измерения ввиду простоты и высокой точности измерения температуры замерзания. Последняя обычно измеряется с помощью специальных метастатических ртутных термометров (термометров Бекмана) с ценой деления 0.01 К. Такие термометры имеют шкалу только на 5 К, но снабжены дополнительным резервуаром для ртути, позволяющим настроить его на любые абсолютные температуры от 260 до 380 К.

Понижение температуры замерзания можно найти как:

Dtзам=i·К·m, где m – моляльность; К - криоскопическая константа, зависящая только от природы растворителя и не зависящая от природы растворенного вещества. Для воды К=1.86, для бензола К=5,07.

 

4. Повышение температуры кипения раствора (эбуллиоскопия). Помимо криоскопического метода в химии применяется эбуллиоскопический метод, основанный на измерении температуры кипения растворов.

Повышение температуры  кипения можно найти как:

Dtкип=i·Е·m, где m – моляльность; Е - эбуллиоскопическая константа, зависящая только от природы растворителя и не зависящая от природы растворенного вещества. Для воды Е=0.52, для бензола Е=2,6.

Оба рассмотренные методы позволяют определять молекулярные массы веществ.

 

Лекции №16,17: Основы химии промышленных взрывчатых веществ.

 

Взрывчатыми веществами (ВВ) называют химические соединения или их смеси, которые способны к быстрой химической реакции, сопровождающейся выделением большого количества тепла и образованием газов. Реакция распространяется по заряду за счет передачи энергии от слоя к слою с помощью процессов тепломассообмена (горение) либо ударной волны (детонация). Скорость горения различных ВВ изменяется в пределах 10-4-102 м/с, скорость детонации – 103-104 м/с.

В взрывном деле и военной технике широко используют твердые и жидкие (конденсированные), а также водонаполненные ВВ, преимущество которых состоит в существенной концентрации энергии в единице объёма. При взрыве помимо высоких скоростей процесса достигается огромная мощность (например, 1кг гексогена, занимающий объём 0,6 л, выделяет при взрыве 5,4 МДж за 10-5 с или 500 ГВт – т.е. в десятки раз больше, нежели мощность крупнейшей электростанции). Газы при взрыве не успевают выйти за пределы объёма, занимаемого ВВ, их температура достигает нескольких тысяч градусов, а давление 10 ГПа. Резко расширяясь, сжатый газ наносит взрывной удар по окружающей среде.

Все ВВ классифицируют: а) по области применения (рис.2); б) по химической природе (составу) (рис.3); в) по степени  безопасности и санитарии (рис.1), а также по другим характеристикам.

 


 

 

 

 

 

 

 

 

 

 

 

Рис.1 Классификация ВВ по степени безопасности и санитарии.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис.2 Классификация ВВ по области применения.

 


 

 

 

 

 

 

 

 

 

 

 

 

Рис.3 Классификация ВВ по химическому составу (природе).

 

Инициирующие  ВВ легко взрываются от простых видов внешнего воздействия (пламени, трения, искры) и способны приводить к детонации бризантных ВВ. К важнейшим инициирующим ВВ относят гремучую ртуть Hg(CNO)2, азид свинца Pb(N3)2, тринитрорезорцинат свинца С6НPbO2(NO2)3·Н2О, тетразен C2Н8ОN10.

 

Бризантные  ВВ являются вторичными ВВ, т.к. для их детонации необходим взрыв какого-либо инициирующего (первичного) ВВ. Без взрывателя не детонируют, а после воспламенения сгорают даже без доступа воздуха. Примеры: нитроглицерин C3H5(ONO2)3, нитродигликоль C4H8О(ONO2)2, ксилил C8H7(NО2)3, пикриновая кислота C6H2(NО2)3OH.

 

Фугасные  или метательные ВВ (пороха) применяются для дробления пород на крупные куски и блоки, перемещения больших объёмов без дробления, сообщения пуле или снаряду движения в канале ствола оружия, а также в качестве топлива реактивных твердотопливных снарядов и ракет и для передачи огневого импульса в огнепроводных (бикфордовых шнурах). Примеры: механические смеси – дымный или чёрный порох (состав: 70-80% KNO3, 10-15% С и 10-15% S); коллоидные пороха – пироксилин C24H29N11O42.

Пиротехнические смеси – применяют для изготовления осветительных, трассирующих, сигнальных, дымовых, зажигательных и воспламенительных составов. Это механические смеси из окислителей и горючих веществ с добавками, сообщающими составам специальные свойства: окрашивание пламени, образование цветного дыма, воспламенение горючих объектов, уменьшение чувствительности смесей (флегматизаторы), скрепление частиц при прессовании (цементаторы) и т.д.

 

Индивидуальные  ВВ подразделяют на следующие классы:

 


 

 

 

 

 

Рис.4 Основные классы индивидуальных ВВ.

Расчет кислородного баланса ВВ

 

Кислородным балансом (КБ) называется выраженное в процентах отношение массы свободного кислорода, остающегося после окисления всего углерода, содержащегося в ВВ, в углекислый газ СО2, всего водорода в H2O, всех металлов в высшие оксиды к массе взятого ВВ. Азот при этом должен оставаться свободным в виде N2.

Вещества с положительным  КБ (селитра, нитроглицерин), т.е. окислители, для увеличения мощности ВВ необходимо смешивать с соединениями, имеющими отрицательный кислородный баланс, или с горючими, в которых не содержится кислорода.

При отрицательном кислородном  балансе в результате взрыва могут образоваться ядовитые газы (СО), сажа (С), а при положительном - ядовитые оксиды азота. Поэтому в промышленности стремятся использовать ВВ такого состава, чтобы их кислородный баланс приближался к нулю. Кислород ВВ в этом случае расходуется таким образом, что в первую очередь он идёт на окисление металлов, водорода, серы в диоксид, углерода первостепенно в оксид, далее в диоксид.

Кислородный баланс индивидуальных взрывчатых веществ можно вычислить по их химическим формулам. Если индивидуальное ВВ содержит атомы кислорода, водорода и азота и его химический состав описывается формулой CaHbNcOd , то его кислородный баланс вычисляется по формуле:

Информация о работе Лекции по "Общей химии"