Методика использования электронных тахеометров при производстве землеустроительных работ и межевании земель

Автор работы: Пользователь скрыл имя, 10 Ноября 2013 в 12:02, дипломная работа

Краткое описание

Проведенный сравнительный анализ позволяет определить эффективность электронного тахеометра по таким критериям как точность, снижение затрат времени, повышение производительности труда, стоимость и ряда других. С этой целью в работе проведен эксперимент, заключающийся в выполнении тахеометрической съемки участка местности на территории Приозерского района Ленинградской области как с использованием электронного тахеометра Topcon GPT 3000 N японского производства, так и с применением комплекта традициионных отечественных геодезических приборов - теодолита 2Т2 и светодальномера 2СТ-10. При этом объем геодезических работ в обоих случаях был идентичен.

Содержание

Введение……………………………………………..……………………………...3
Глава 1. АНАЛИЗ ТРЕБОВАНИЙ К ПРОИЗВОДСТВУ ЗЕМЛЕУСТРОИТЕЛЬНЫХ РАБОТ В РОССИЙСКОЙ ФЕДЕРАЦИИ ………..5
1.1. Основные понятия по землеустройству ……………………………………...5
1.2. Методические основы межевания земель………………………….…………7
1.2.1. Требования к закреплению на местности границ земельного участка….11
1.2.2. Подготовительные работы…………………………………………………13
1.2.3. Полевое обследование пунктов геодезической опоры и
межевых знаков……………………………………………………………………14
1.2.4. Составление технического проекта……….………………………………14
1.2.5. Определение координат межевых знаков…………………………………16
1.2.6. Составление чертежа границ земельного участка……………………….16
1.2.7. Контроль и приёмка материалов межевания земель
представителями Росземкадастра………………………………………………..17
1.2.8. Формирование межевого дела…………………………………………….18
1.3. Геодезические работы для земельного кадастра ……………………….….18
1.3.1. Общие понятия о земельном кадастре……………………………………18
1.3.2. Требования к кадастровому делению……………………………………..20
1.3.3. Состав геодезических работ в кадастре…………………………………..24
1.3.4. Способы и точность определения площадей земельных участков……..27
1.3.5. Вынос в натуру и определение границ землепользования………………28
Геоинформационные системы в кадастре…………………………………30
Выводы по главе 1………………………………………………………….33
Глава 2. Методика использования электронных
тахеометров при производстве землеустроительных
работ и межевании земель……………………………………………..35
2.1. Анализ современных средств и методов электронной тахеометрии……..35
2.2. Исследование методики работ на электронном тахеометре Topcon
GPT 3000 N при производстве земельного кадастра и межевании земель……39
Выводы по главе 2………………………………………………………………..51
Глава 3. ЭКСПЕРИМЕНТальнЫЕ ИССЛЕДОВАНИЯ методики использования электронных тахеометров при производстве землеустроительных работ……………………….53
3.1. Цель и организация экспериментальных исследований……………………53
3.2. Сущность экспериментальной проверки методики работ
на электронном тахеометре Topcon GPT 3000 N……………………………….53
Выводы по главе 3…………………………………………………………………62
Заключение…………………………………………………………………………63
Список литературы………………………………………………

Прикрепленные файлы: 1 файл

тахеометр топкон.doc

— 7.49 Мб (Скачать документ)

Таким образом, под геоинформационной  системой чаще всего понимают компьютерное хранилище знаний о территориальном  взаимодействии природы и общества, обеспечивающее сбор, хранение, обработку и визуализацию (зрительное представление) многих видов информации о явлениях в окружающем человека пространстве и во времени. К их числу относится информация из областей географии, информатики, геодезии, картографии, земельного учёта, управления, права, экологии и других наук.

Геоинформационные системы  разделяются по территориальному охвату:         общенациональные и региональные; по целям использования: многоцелевые, специализированные, информационно-справочные, для нужд планирования, управления и др.; по тематике: водных ресурсов, использования земель, лесопользования, туризму и др. Особенно развиваются системы ориентированные на кадастр.

Источники информации для ГИС являются географические и топографические карты и планы, аэрокосмические материалы, нормативные и правовые документы.

Современные ГИС, как  правило, являются цифровыми и создаются  с использованием специального программного обеспечения и объёма данных, называемого базой данных.

База данных цифровой карты включает в себя два варианта информации:         пространственную, определяющую местоположение объекта и семантическую (атрибутивную) описывающую свойства объекта.

Многообразная пространственная информация в ГИС организуется в виде отдельных тематических слоёв, отвечающих решению различных задач. Каждый слой может содержать информацию, относящуюся только к одной или нескольким темам. Например, для задач развития городской территории набор из отдельных слоёв может включать в себя данные: о землевладениях, и недвижимости, об объектах транспорта, образования, здравоохранения, культуры, инженерных сетях, рельефе, геодезических сетях и других объектах городского хозяйства.

Для представления карт и планов в компьютере используется прямоугольная система координат. Каждая точка описывается одной парой координат X и Y. Пользуясь координатной системой, можно представить точки, линии и полигоны в виде списка координат. При этом для представления земной поверхности на плоскости используются различные картографические проекции, например проекции Гаусса-Крюгера.

Данные с карты, плана  вводятся в компьютер путём цифрования. Цифрование может быть выполнено либо путём оцифровки каждой характерной точки объекта, либо путём сканирования всего листа карты электронным сканером. Ввод в базу данных компьютера может быть также осуществлен с электронных геодезических приборов. Описательные характеристики объектов могут вводиться с клавиатуры компьютера. Данные аэро- и космических съёмок, записанные в цифровом виде, также могут быть введены в компьютер, минуя бумажную стадию.

По существу, любой  вид кадастра (земельный, градостроительный, водный и пр.) является геоинформационной системой, поскольку содержит совокупность достоверных и необходимых сведений о природном, хозяйственном и правовом положении земель и недр на базе картографической информации. Картографическая информация служит и для оценки количества, качества и стоимости земель, регистрации землепользования и землевладения, текущего контроля за землепользованием.

Информационная основа кадастра создаётся в результате инвентаризации земель и кадастровых  съёмок. Эти работы могут охватывать как большие территории (город, район и пр.), так и небольшие земельные участки.

Чтобы разместить большое количество сведений в единой информационной системе, кадастровая информация делится на элементарные слои, каждый из которых самостоятельно используется для решения конкретной задачи.

Для автоматизированной системы кадастра, основанной на применении ГИС, используются цифровые кадастровые планы, карты. Все объекты, представленные на кадастровой карте, плане, имеют пространственную привязку, т.е. их положение определено в той системе координат, которая принята для создания карты. Описательные данные объекта (земельного участка) составляют содержание базы данных информационной системы. Для обозначения и связи объектов этой базы данных используются идентификаторы (кадастровые номера) участков. Таким образом, цифровая кадастровая карта, представляя собой совокупность метрических (графических) и семантических (описательных) данных, является картографической частью информационной системы кадастра. Определяя местоположение земельных участков, их границы и площади, она используется как инструмент управления земельными ресурсами.

Таким образом, государственный  земельный кадастр является геоинформационной системой, обеспечивая сбор, хранение и выдачу земельной информации потребителям.

Выводы по главе 1

1.  В перечне землеустроительных  работ земельный кадастр и в частности межевание земель занимают важное место. Земельный кадастр – это государственная система необходимых сведений и документов о правовом режиме земель, их распределении по собственникам земли, землевладельцам, землепользователям и арендаторам, категориям земель, о качественной характеристике и народнохозяйственной ценности земель. Межевание земель представляет собой комплекс работ по установлению, восстановлению и закреплению на местности границ земельного участка, определению его местоположения и площади.

2. Геодезические работы являются важной и неотъемлемой частью комплекса работ по изысканиям, проектированию, строительству и эксплуатации инженерных объектов, гидромелиоративных систем, объектов лесного хозяйства и др. Эти работы во многом определяют как стоимость и качество строительства, так и условия последующей эксплуатации этих объектов.

3. В зависимости от  назначения кадастра кадастровые  съёмки производят в тех же масштабах, теми же способами и с той же точностью, что и топографические. Базовым является масштаб 1:500, наиболее широко используемым 1:2000, обзорно-справочным 1:10000 и мельче.

На кадастровых картах и планах дополнительно изображают границы земельных участков, владений, сельскохозяйственных и других земельных угодий, кадастровые номера и наименования земельных участков, дают экспликацию (описание категорий использования земель и других кадастровых сведений). Кадастровые карты и планы могут не содержать информацию о рельефе местности.

3. Для определения  координат пунктов ОМС (ОМЗ)  и межевых знаков используют: спутниковые геодезические определения; традиционные методы геодезии и фотограмметрические методы.

Для производства измерений  применяют:

- спутниковые геодезические  приёмники;

- электронные тахеометры;

- светодальномеры;

- теодолиты;

- фотограмметрические (работы) приборы.

В данной главе проведен анализ требований и методик выполнения основных видов землеустроительных работ, раскрыты основные принципы проведения земельного кадастра, содержание межевания земель, опираясь на которые перейдем к исследованию методики работ на электронных тахеометрах при их производстве на примере тахеометра Topcon GPT 3000 N производства Японии.

 

Глава 2. Методика использования электронных тахеометров при производстве землеустроительных работ и межевании земель

2.1. Анализ современных  средств и методов электронной  тахеометрии

 

В геодезической практике последних лет, в качестве геодезических  измерительных средств, широкое применение нашли электронные тахеометры, предназначенные для автоматизированной тахеометрической съемки и производства инженерно - геодезических работ.

Электронный тахеометр (ЭТ) – это соединение угломерной и  дальномерной частей, блока контроля и управления процессом измерений (как правило, на основе микроЭВМ), индикаторного устройства, блока питания. Основу угломерной части тахеометров с электронным считыванием составляют датчики накопительного или позиционного типа.

Интенсивное развитие электронных  тахеометров, отличающихся высокой  степенью автоматизации угловых и линейных измерений, привело к разработке систем и комплексов, включающих в качестве составных частей или блоков указанные приборы и повышающих уровень автоматизации не отдельных процессов, а топографической съемки в целом. При этом значительная автоматизация линейно-угловых измерений и топографических съемок обеспечивается в настоящее время использованием при проведении этих работ электронных тахеометров.

Областями применения электронных  тахеометров являются: проведение топографо-геодезических  работ, выполняемых в полевых  условиях, на строительных площадках, при производстве гидромелиоративных работ, крупное машиностроение, судостроение, инженерные и инженерно-геодезические изыскания, геологические изыскания, военное дело и многое другое. При выполнении работ с применением электронных тахеометров решаются такие практические задачи, как вынос проектных точек в натуру, измерение мостовых пролетов, разбивка по полярным координатам, определение высот недоступных точек, определение продольных и поперечных отклонений точек от заданных осей, создание и обновление топографических карт и планов и т.д.

В совершенствовании  электронных тахеометров можно  отметить следующие основные этапы:

70-е годы XX века - создание тахеометров первого поколения, как приборов для угловых и линейных измерений в полярной системе координат, оснащенных микропроцессором.

80-е годы – создание  тахеометров с коррекцией результатов  измерений для уменьшения влияния  случайных и систематических  ошибок, а также влияния внешних условий;

90-е годы и последующие  – создание электронных тахеометров с устройством автоматического наведения на точки визирования (могут задаваться лазерным лучом) на основе ПЗС – матрицы (видеотахеометр), с измерениями дальности без применения специальных оптических отражателей, с ошибками в диапазоне 2-20 мм. на расстояниях до 150 м, с возможностью свободного выбора точек стояния прибора и объединения двух тахеометров в измерительную систему, связанных комплексом на базе ЭВМ. Использование вычислительных устройств позволило упростить конструкцию тахеометров, снизить требования к оптикомеханическим узлам, существенно упростить порядок проведения измерений.

Современные электронные  тахеометры отличаются полной автоматизацией измерений и вычислений, возможностью составлять и обновлять цифровые карты и планы, компактностью, малой потребляемой мощностью. Встроенная миниЭВМ позволяет повысить производительность измерительного процесса, его точность, обеспечить безошибочность выполнения работ, обрабатывать результаты измерений. Подключение регистрирующего устройства или наличие встроенных ЭВМ обеспечивают автоматизацию всех процессов: отсчитывание расстояний; предварительная обработка информации до получения координат точек или других величин; выдача результатов на дисплей и в накопитель, передача их по радиоканалу в назначенные места; учет остаточного наклона вертикальной оси прибора и ошибки эксцентриситета лимба при одностороннем отсчитывании; введение поправок за метеоусловия; обработка информации для получения координат точек; обработка информации для получения цифровой карты или плана участка местности. В конструкции одних электронных тахеометров учитываются измерения углов (направлений) при двух положениях круга, в других измеряются углы при одном положении круга - при этом система встроенных датчиков компенсируют возникшие при этом погрешности. Зрительная труба тахеометров моноблочного типа конструктивно совмещена с приемопередающей системой дальномерной части. Наличие встроенных в приборы электронных уровней позволяет автоматически учитывать наклон вертикальной оси вращения.

Создание современных  ЭТ является результатом развития геодезического приборостроения последних десятилетий, когда были созданы оптико-механические тахеометры, кодовые теодолиты и электронные дальномеры. ЭТ представляют собой смонтированные в единую или модульную конструкцию теодолит, светодальнометр и микропроцессор или микроЭВМ. 

Практически все ведущие  зарубежные фирмы традиционно специализирующиеся на разработке и выпуске оптикомеханических и оптико-электронных геодезических приборов, представляют на мировой рынок ЭТ различной конструкции и назначения. Среди этих фирм следует отметить фирмы: Carl Zeis (Германия),  Leica AG (Швейцария), Topcon (Япония) и др., имеющие свои торговые представительства в России. В нашей стране разработка и выпуск ЭТ осуществляется в ЦНИИГАиК, на экспериментальном оптико-механическом заводе (ЭОМЗ) и Уральском оптико-механическом заводе (УОМЗ). Современные ЭТ условно можно разделить на простейшие, универсальные и роботизированные.

Простейшие ЭТ - приборы  с минимальной автоматизацией и огромным программным обеспечением. Такие тахеометры обеспечивают точность измерения углов 5-10″, линий (3+5*10-6 D) мм.

Универсальные ЭТ – приборы  с расширенными возможностями. Они  оснащены большим числом встроенных программ. Обеспечивается точность измерения углов 1-5″, линий (2+3*10-6 D) мм.

Роботизированные ЭТ- тахеометры с сервомоторами, обладающие всеми возможностями предыдущей группы. Наличие сервомоторов, встроенных радиокоммуникационных устройств, а также систем автоматического слежения за отражателями позволяет отнести эти приборы к категории тахеометров-роботов.

В приложении № 1 представлены основные технические характеристики современных электронных тахеометров.

Отметим некоторые конструктивные и технологические особенности  ряда ЭТ, повышающие возможности их использования на производстве (в скобках даны номера приборов из таблицы приложения № 1, обладающие указанными признаками).

К этим особенностям относятся:

- широкий температурный  диапазон (1, 2, 27);

-  влагозащитное исполнение корпуса (16, 22, 23);

- широкий выбор аксессуаров  – отражатели, вехи, штативы, трегеры  и др. (12-15);

- безотражательный дальномер  (5, 11-15);

- интерфейс RЗ232 для связи с ПЭВМ (6-10,1-20,27);

- режим слежения за  движущейся визирной целью (5,6,8-15);

- режим самонаведения на визирную цель (6,8-15);

- мощное встроенное  программное обеспечение (4,6-10,17-20,27,28);

Информация о работе Методика использования электронных тахеометров при производстве землеустроительных работ и межевании земель