Основы техники гимнастических упражнений

Автор работы: Пользователь скрыл имя, 17 Июня 2014 в 15:33, контрольная работа

Краткое описание

Внешними силами при выполнении упражнений могут быть: вес тела гимнаста или отдельных его звеньев; сила трения, возникающая при взаимодействии гимнаста со снарядом (с опорой), сопротивление воздуха. Эти силы могут как затруднять, так и облегчить выполнение упражнений. Так, например, действие силы земного притяжения при движении тела гимнаста или отдельных его звеньев из более высокого в более низкое положение по отношению к опоре облегчает выполнение многих упражнений, а движение из низкого в более высокое — затрудняет. Сила трения может затруднять движение и в то же время создает условия для эффективного выполнения упражнения.

Содержание

ВНЕШНИЕ И ВНУТРЕННИЕ СИЛЫ
Введение
Статические упражнения
Динамические упражнения
Реактивное движение, реактивная сила. Хлестовые движения
Вращательные движения
Отталкивание
Приземление
Силовые упражнения
Маховые упражнения
Выводы
Список использованной литературы
II. ОПОРНЫЙ ПРЫЖОК СОГНУВ НОГИ ЧЕРЕЗ КОЗЛА В ДЛИНУ.

Прикрепленные файлы: 1 файл

контрольная по гимнастике.docx

— 818.22 Кб (Скачать документ)
  1. Реактивное движение, реактивная сила. Хлестовые движения

При выполнении многих гимнастических упражнений, особенно на снарядах, гимнасту приходится учитывать их упругость, эластические (рессорные) свойства. Более того, для эффективного выполнения упражнений они специально стараются вызвать «реактивное движение» снаряда или опорной части собственного опорно-двигательного аппарата, а чаще того и другого одновременно; затем используют свою реакцию опоры для облегчения выполнения упражнения в соответствии с третьим законом динамики.

Реактивное движение — это изменение формы снаряда или другой опорной поверхности (помост для вольных упражнений, акробатическая дорожка) под воздействием количества движения, накопленного телом гимнаста до момента отталкивания от нее, например, при наскоке на гимнастический мостик, приземлении на акробатическую дорожку, воздействии на гриф перекладины, жерди брусьев.

Реактивное движение можно вызвать и в собственном опорно-двигательном аппарате в виде натяжения мышц, связок, суставных сумок, сжатия или натяжения межпозвоночных хрящей под воздействием мышц-антагонистов, веса тела или отдельных его звеньев, момента инерции одних звеньев тела по отношению к другим, выполняющим опорную функцию. Однако реактивное движение снаряда (любой упругой опорной поверхности) в силу своей упругости в соответствии с третьим законом динамики окажет обратное воздействие на тело гимнаста с такой же силой, с какой он вызвал реактивное движение. При технически правильном отталкивании происходит сложение двух сил: силы отталкивания гимнаста от опоры и реактивной силы самого снаряда.

Реактивная сила (реакция опоры) — это воздействие опоры на тело гимнаста. Такой силой могут обладать также натянутые мышцы, связки и другие части опорно-двигательного аппарата. Реактивные силы снаряда и собственного опорно-двигательного аппарата, особенно при их одновременном действии, помогают гимнасту выполнить упражнение технически более правильно, эффективно, с меньшими затратами мышечной энергии на основную часть упражнения.

Воздействие реактивной силы особенно наглядно можно проследить при выполнении упражнений на батуте, при отталкивании от пружинного мостика. Ее неумелое использование затрудняет выполнение упражнения.

Величина воздействия реакции опоры на опорно-двигательный аппарат гимнаста определяется с помощью динамографических платформ. Оцениваются вертикальная и горизонтальная составляющие реакции опоры.

Величина реактивного движения (х) снаряда измеряется изменением деформируемой его части по отношению к исходному уровню (рис. 9).

 



 

 

 

 

 

 

Реактивная сила (Р) измеряется произведением коэффициента жесткости деформируемой части снаряда (с) на величину ее изменения (х):     Р = -сх.

Сила реакции опоры при отталкивании может превышать вес спортсмена в 5 —6 раз. Нагрузка на голеностопный сустав в вольных упражнениях ведущих гимнастов составляет 700 — 800 кг в течение 0,09 — 0,11 с. Степень воздействия реактивных сил возрастает с увеличением числа звеньев тела, активно участвующих в движении (отталкивание ногами в сочетании с разгибанием спины и взмахом рук).

Хлестовое (бросковое) движение — это такое волнообразное движение тела, когда в процессе маха ноги совершают колебательные движения относительно туловища: они то отстают от него, то обгоняют, то снова отстают. В этом случае происходит перераспределение энергии за счет последовательного включения в работу соответствующих групп мышц. Чаще наблюдается такое чередование: в начале маха ноги отстают от туловища, при этом натягиваются мышцы передней поверхности тела, затем, за счет активного сокращения этих мышц, ноги обгоняют туловище, а к концу Движения вновь отстают от него. При таком характере движений происходит увеличение количества движения, приобретаемого ногами. Ноги в конечной точке маха обладают наибольшим моментом количества движения. В этом случае руками оказывается мощное давление на снаряд, и тело, как бы опираясь на две точки опоры (руки и ноги), получает возможность подняться выше относительно снаряда (соскок махом вперед на перекладине, кольцах и др.).

  1. Вращательные движения

 

Вращательное движение — это такое движение твердого тела, при котором все или, по крайней мере, две точки, лежащие на оси вращения, остаются неподвижными. В гимнастике к таким движениям относятся сальто, повороты и их сочетания. Основными характеристиками этого вида движений являются угловая скорость и угловое ускорение.

При рассмотрении возможности выполнения вращательных движений в безопорном положении необходимо учитывать, что тело гимнаста в этом случае обладает постоянным моментом количества движения: L = const. Из этого следует, что траектория движения ОЦМ тела определяется лишь величиной и направлением скорости вылета в безопорное положение; нельзя ни уменьшить, ни увеличить и количество движения, его можно лишь перераспределить между отдельными звеньями тела.

В безопорном положении тело гимнаста всегда вращается вокруг оси, проходящей через его ОЦМ. Поэтому любая сила, линия действия которой не проходит через ОЦМ, создает вращательный момент относительно оси, проходящей через ОЦМ тела. Поворот начинается с концевых звеньев тела, потому что они обладают наибольшей подвижностью. В том случае, когда сила действует по линии, проходящей через ОЦМ тела, момента не создается, так как ее плечо равно нулю. В сложных вращательных движениях на тело одновременно могут действовать несколько моментов инерции, в этом случае их общий момент инерции будет равен сумме действующих моментов инерции.

При выполнении вращательных движений приходится учитывать также и то, что звенья тела, как уже отмечалось, могут перемещаться одно относительно другого только в противоположные стороны навстречу друг другу со скоростями, обратно пропорциональными их моментам инерции. Так, например, при попытке выполнить сальто вперед согнувшись за счет активных движений туловищем и поднятых вверх рук туловище повернется вокруг своей оси на угол в 45°, а ноги навстречу ему — на 90°. Так произойдет потому, что момент инерции туловища в этом случае оказывается в два раза большим по сравнению с моментом инерции ног. При выполнении этого же упражнения, но только за счет активных движений одних рук, соотношение моментов инерции рук и остальной части тела в вытянутом положении равно 1 : 12, а в группировке — 1:4 (по С.-М.А.Алекперову).

Из сказанного логически вытекает, что только за счет движений одних рук существенного вращения тела добиться нельзя. Руками можно только подправить положение тела в пространстве с целью более правильного приземления, большего сделать не представляется возможным из-за того, что при выполнении гимнастических упражнений тело гимнаста в безопорном положении находится не более 1,5 с.

Выгодное для поворота тела соотношение моментов инерции взаимодействующих звеньев создается в том случае, если туловище и ноги расположить под углом 90 — 100°. Тогда величина момента инерции ног относительно продольной оси туловища будет приблизительно в 7 —8 раз больше момента инерции туловища относительно его продольной оси, а последний — примерно во столько же раз больше момента инерции ног относительно их продольной оси. Это позволяет выполнить повороты вокруг продольной оси туловища или ног. В первом случае для создания вращательного импульса в качестве опоры используются ноги. Момент их инерции, учитывая расстояние их ОЦМ до продольной оси туловища, значительно превосходит момент инерции туловища. Это дает возможность, «отталкиваясь» от ног, повернуть туловище вокруг его продольной оси. После этого тело разгибается в тазобедренных суставах. При этом ноги «догоняют» туловище, отнимая у него часть накопленного момента количества движения.

Подобным же образом выполняется поворот вдоль продольной оси ног, так как момент их инерции становится значительно меньше момента инерции туловища.  После создания вращательного импульса гимнаст может снова сгибаться и разгибаться, выполняя поворот вокруг продольной оси туловища или ног. Количество поворотов, которые гимнаст может выполнить в безопорном положении, зависит от запаса высоты, а следовательно, и времени. В процессе поворота та часть тела, которая служила опорой для поворачивающейся части, будет догонять ее и отнимать часть приобретенных ею момента количества движения или кинетической энергии (рис. 114, а, б).

В безопорном положении можно выполнять не только вращательные движения во всех плоскостях пространства, но и перемещаться вверх-вниз при отталкивании вверх под углом 90° к горизонтали и по параболе — при отталкивании под различными углами при наличии горизонтальной составляющей скорости ОЦМ тела.

В безопорном положении можно изменять скорость вращения тела путем изменения позы. Например, при вращении вокруг продольной оси тела сгибание тела, отведение рук в стороны приводят к замедлению скорости вращения; разгибание тела, приведение рук — к ее увеличению.



 

 

 

  1. Отталкивание

 

Отталкивание заключается в активном удалении ОЦМ тела или отдельных его звеньев от опоры. Энергия отталкивания может использоваться для перехода тела из более низкого в более высокое опорное положение, из опорного — в безопорное, для создания вращательного импульса и др. Отталкиваться можно с места, с разбега, с размахивания, руками, ногами, плечами и другими звеньями тела.

Импульс силы при отталкивании создается за счет активных мышечных усилий ног, рук, туловища и реакции опоры. Он задает телу количество движения, равное произведению его массы (т) на модуль начальной скорости (г>). Поскольку масса тела гимнаста — величина постоянная, то получается, что высота вылета ОЦМ тела (Я) зависит от его начальной скорости. Чем больше импульс силы и чем ближе направление его вектора к вертикали (sin 90° = = 1; если угол а больше или меньше 90°, то sina< 1), тем выше подъем ОЦМ тела после отталкивания.

где Н — высота вылета ОЦМ тела; v — его начальная скорость в момент отрыва от опоры; a — угол между горизонталью и направлением вектора скорости.

Величину начальной скорости (v) определяют: а) степень нарастания усилий в фазе активного отталкивания; б) угловая скорость разгибания ног в рабочих суставах (чем меньше угол сгибания, тем больше скорость); в) длительность отталкивания — чем она дольше, тем меньше начальная скорость вылета, а следовательно, и его высота; г) упругие свойства опоры (величина реакции опоры); д) угол постановки ног (рук, других звеньев тела) на опору в месте отталкивания — чем он ближе к вертикали, тем лучше; е) величина боковых колебаний прилагаемых усилий — чем она меньше, тем лучше; ж) положение туловища по отношению к вертикали — лучше ближе к ней.

 

 

  1. Приземление

Приземление — это одно из сложных и ответственных для гимнаста упражнений. Его технически правильное выполнение существенно украшает выполненную комбинацию или опорный прыжок, исключает возможность травматических повреждений. Поэтому гимнасты стараются завершить свою комбинацию сложными и красивыми соскоками с большой амплитудой полета и точным приземлением. Во время приземления погашается скорость, а следовательно, и количество движения, накопленное телом к моменту приземления, и сохраняется устойчивое равновесие.

При погашении скорости движения гимнаст может испытывать значительные по величине перегрузки. Их величина пропорциональна быстроте замедления скорости движения ОЦМ тела книзу. Частые приземления могут отрицательно повлиять на работоспособность гимнастов. Они вызывают «болтанку» внутренних подвижных органов и раздражение интерорецепторов, заложенных в брызжейке и в самих органах, в стенках кровеносных сосудов нижней половины тела, а также в рецепторных приборах вестибулярного анализатора и др. Перегрузку испытывает и опорно-двигательный аппарат гимнаста. Ударные нагрузки быстро утомляют мышцы ног, вызывают в них болевые ощущения.

Во время приземления нагрузка на опорно-двигательный аппарат, особенно на ноги, иногда достигает больших величин. Например, после выполнения курбета она может колебаться в пределах 340 — 500 кг. При выполнении многих упражнений гимнасту приходится приземляться не на ноги, а на руки. В этом случае опорно-двигательный аппарат рук подвергается нагрузке в 250 — 300 кг и более.

Кинетическая энергия, накопленная к моменту приземления, погашается за счет использования рессорных свойств опорно-двигательного аппарата и погашения ее самой опорой. Поэтому чем хуже техника приземления и жестче опора, на которую приземляется гимнаст, тем больше нагрузка на его опорно-двигательный аппарат, тем больше и другие отрицательные влияния.

Сохранение равновесия в опорной фазе приземления зависит от формы полета тела относительно траектории движения его ОЦМ, направления и скорости вращения тела вокруг ОЦМ; от способности гимнаста своевременно исправить неточность приземления за счет специальных движений руками, головой, туловищем; от силы мышц ног.

Точность приземления зависит и от правильного выполнения элемента, предшествующего соскоку, и, главным образом, от самого соскока, техники приземления. При ее нарушении гимнаст может потерять равновесие с перемещением тела вперед, назад и в стороны. Для того чтобы избежать этих ошибок и сделать приземление технически правильным и красивым, надо соблюдать следующие основные правила:

  1. Чем выше высота полета ОЦМ тела, тем глубже и продолжительнее должно быть приседание.
  2. Чем больше скорость вращения тела вокруг одной или нескольких осей одновременно, тем дальше от проекции ОЦМ тела на опору ставятся пальцы ног в соответствующую сторону в зависимости от направления вращения тела к моменту приземления. При большой горизонтальной скорости ноги ставятся впереди от проекции ОЦМ тела.
  3. Для того чтобы устойчиво приземляться, нужно, еще находясь в полете, постараться выпрямиться, незначительно согнуться в тазобедренных суставах и слегка ссутулиться в грудной части.

Информация о работе Основы техники гимнастических упражнений