Автор работы: Пользователь скрыл имя, 15 Сентября 2013 в 18:41, реферат
Цель данной работы всестороннее изучение и анализ создания специальной теории относительности Альбертом Эйнштейном.
Введение
Механический принцип относительности преобразования Галилея
Постулаты современной теории относительности
Преобразования Лоренца
Следствия из преобразований Лоренца
Одновременность событий в разных системах отсчета.
Длительность событий в разных системах отсчета.
Длина тел в разных системах отсчета.
Преобразование и сложение скоростей.
Интервал между событиями
Основной закон релятивистской динамики материальной точки
релятивистский импульс материальной точки.
Взаимосвязь массы и энергии
Границы применимости специальной теории относительности
Заключение
Список использованной литературы
Преобразования Лоренца имеют вид
|
| |
|
(9.8) |
Из сравнения приведенных
Из преобразований Лоренца вытекает также, что при малых скоростях (по сравнению со скоростью света), т.е. когда , они переходят в классические преобразования Галилея (в этом заключается суть принципа соответствия), которые являются, следовательно, предельным случаем преобразований Лоренца. При v>c выражения (9.8) для х, t, x', t' теряют физический смысл (становятся мнимыми). Это находится, в свою очередь, в соответствии с тем, что движение со скоростью, большей скорости света в вакууме, невозможно.
Из преобразований Лоренца следует очень важный вывод о том, что как расстояние, так и промежуток времени между двумя событиями меняются при переходе от одной инерциальной системы отсчета к другой, в то время как в рамках преобразований Галилея эти величины считались абсолютными, не изменяющимися при переходе от системы к системе. Кроме того, как пространственные, так и временные преобразования (см. (9.8)) не являются независимыми, поскольку в закон преобразования координат входит время, а в закон преобразования времени – пространственные координаты, т.е. устанавливается взаимосвязь пространства и времени. Таким образом, теория Эйнштейна оперирует не с трехмерным пространством, к которому присоединяется понятие времени, а рассматривает неразрывно связанные пространственные и временные координаты, образующие четырехмерное пространство – время.
4. 1. Одновременность событий в разных системах отсчета.
Пусть в системе К в точках с координатами и d моменты времени и происходят два события.
В системе им соответствуют координаты и и моменты времени и . Если события в системе К происходят в одной точке ( ) и являются одновременными( ), то, согласно преобразованиям Лоренца (9.8), и , т.е. эти события являются одновременными и пространственно совпадающими для любой инерциальной системы отсчета.
Если события в системе К пространственно разобщены , но одновременны ( ), то в системе К', согласно преобразованиям Лоренца (9.8), , .
|
|
Таким образом, в системе К' эти события, оставаясь пространственно разобщенными, оказываются и неодновременными. Знак разности определяется знаком выражения , поэтому в различных точках системы отсчета К' (при разных v) разность будет различной по величине и может отличаться по знаку. Следовательно, в одних системах отсчета первое событие может предшествовать второму, в то время как в других системах отсчета наоборот второе событие предшествует первому. Сказанное, однако, не относится к причинно-следственным событиям, так как можно показать, что порядок следования причинно-следственных событий одинаков во всех инерциальных системах отсчета.
Пусть в некоторой точке (с координатой), покоящейся относительно системы К, происходит событие, длительность которого (разность показаний часов в конце и начале события) , где индексы 1 и 2 соответствуют началу и концу события. Длительность этого же события в системе
, (9.9)
причем началу и концу события согласно (9.8) соответствуют
(9.10)
Подставляя (9.10) в (9.9), получим
или (9.11)
Из соотношения (9.11) вытекает, что т.е. длительность события, происходящего в некоторой точке, наименьшая в той инерциальной системе отсчета, относительно которой эта точка неподвижна. Этот результат может быть еще истолкован следующим образом: интервал времени отсчитанный по часам в системе К', с точки зрения наблюдателя в системе К продолжительнее интервала , отсчитанного по его часам. Следовательно, часы, движущиеся относительно инерциальной системы отсчета, идут медленнее покоящихся часов, т.е. ход часов замедляется в системе отсчета, относительно которой часы движутся. На основании относительности понятий «неподвижная» и «движущаяся» системы соотношения для и ' обратимы. Из (9.11) следует, что замедление хода часов становится заметным лишь при скоростях, близких к скорости света в вакууме.
В связи с обнаружением релятивистского эффекта замедления хода часов в свое время возникла проблема «парадокса часов» (иногда рассматривается как «парадокс близнецов»), вызвавшая многочисленные дискуссии. Представим себе, что осуществляется фантастический космический полет к звезде, находящейся на расстоянии 500 световых лет (расстояние, на которое свет от звезды до Земли доходит за 500 лет), со скоростью, близкой к скорости света ( = 0,001). По земным часам полет до звезды и обратно продлится 1000 лет, в то время как для системы корабля и космонавта в нем такое же путешествие займет всего 1 год. Таким образом, космонавт возвратится на Землю в 1/ раз более молодым, чем его брат-близнец, оставшийся на Земле. Это явление, получившее название парадокса близнецов, в действительности парадокса не содержит. Дело в том, что принцип относительности утверждает равноправность не всяких систем отсчета, а только инерциальных. Неправильность рассуждения состоит в том, что системы отсчета, связанные с близнецами,– не эквивалентны: земная система инерциальна, а корабельная – неинерциальна, поэтому к ним принцип относительности неприменим.
Релятивистский эффект замедления хода часов является совершенно реальным и получил экспериментальное подтверждение при изучении нестабильных, самопроизвольно распадающихся элементарных частиц в опытах с -мезонами. Среднее время жизни покоящихся -мезонов (по часам, движущимся вместе с ними) Следовательно, -мезоны, образующиеся в верхних слоях атмосферы (на высоте «30 км) и движущиеся со скоростью, близкой к скорости света, должны были бы проходить расстояния , т.е. не могли бы достигать земной поверхности, что противоречит действительности. Объясняется это релятивистским эффектом замедления хода времени: для земного наблюдателя срок жизни -мезона , а путь этих частиц в атмосфере . Так как , то .
Рассмотрим стержень, расположенный вдоль оси х' и покоящийся относительно системы К'. Длина стержня в системе К' будет , где – не изменяющиеся со временем координаты конца и начала стержня, а индекс 0 показывает, что в системе отсчета К' стержень покоится. Определим длину этого стержня в системе К, относительно которой он движется со скоростью v. Для этого необходимо измерить координаты его концов в системе К в один и тот же момент времени t. Их разность и даст длину стержня в системе К. Используя преобразования Лоренца (9.8), получим
,
т.е. (9.12)
Таким образом, длина стержня, измеренная в системе, относительно которой он движется, оказывается меньше длины, измеренной в системе, относительно которой стержень покоится. Если стержень покоится в системе К, то, определяя его длину в системе К', опять-таки придем к выражению (9.12).
Из выражения (9.12) следует, что линейный размер тела, движущегося относительно инерциальной системы отсчета, уменьшается в направлении движения раз, т.е. так называемое лоренцево сокращение длины тем больше, чем больше скорость движения. Из второго и третьего уравнений преобразований Лоренца (9.8) следует, что , , т.е. поперечные размеры тела не зависят от скорости его движения и одинаковы во всех инерциальных системах отсчета. Таким образом, линейные размеры тела наибольшие в той инерциальной системе отсчета, относительно которой тело покоится.
Рассмотрим движение материальной точки в системе К', в свою очередь движущейся относительно системы К со скоростью v. Определим скорость этой же точки в системе К. Если в системе К движение точки в каждый момент времени t определяется координатами х, у, z, а в системе К' в момент времени – координатами х', у', z', то и представляют собой соответственно проекции на оси х, у, z и х', у', z' вектора скорости рассматриваемой точки относительно систем К и
Согласно преобразованиям Лоренца (9.8),
.
Произведя соответствующие
|
|
, ,
|
, , (9.13) . |
Если материальная точка движется параллельно оси х, то скорость и относительно системы К совпадает с их, а скорость и' относительно К' – с и'х. Тогда закон сложения скоростей примет вид
, (9.14)
Легко убедиться в том, что если скорости v, и' и и малы по сравнению со скоростью света с, то формулы (9.14) и (9.13) переходят в закон сложения скоростей в классической механике. Таким образом, законы релятивистской механики в предельном случае для малых скоростей (по сравнению со скоростью света) переходят в законы классической физики, которая, следовательно, является частным случаем механики Эйнштейна для малых скоростей.
Релятивистский закон сложения скоростей подчиняется второму постулату Эйнштейна. Действительно, если , то формула (9.14)) примет вид (аналогично можно показать, что при скорость и' также равна с). Этот результат свидетельствует о том, что релятивистский закон сложения скоростей находится в согласии с постулатами Эйнштейна.
Докажем также, что если складываемые скорости сколь угодно близки к скорости света с, то их результирующая скорость будет всегда меньше или равна с. В качестве примера рассмотрим предельный случай u' = v = c. После подстановки в формулу (9.14) получим и = с. Таким образом, при сложении любых скоростей результат не может превысить скорости света с в вакууме. Скорость света в вакууме есть предельная скорость, которую невозможно превысить.
Преобразования Лоренца и
, (9.15)
где – расстояние между точками обычного трехмерного пространства, в которых эти события произошли. Введя обозначение , , покажем, что интервал между двумя событиями одинаков во всех инерциальных системах отсчета. Обозначив , , , , выражение (9.15) можно записать в виде .
Интервал между теми же событиями в системе К' равен
(9.16)
Согласно преобразованиям Лорен
.
Подставив эти значения в (9.16), после элементарных преобразований получим, что , т.е. .
Обобщая полученные результаты, можно сделать вывод, что интервал, определяя пространственно-временные соотношения между событиями, является инвариантом при переходе от одной инерциальной системы отсчета к другой. Инвариантность интервала означает, что, несмотря на относительность длин и промежутков времени, течение событий носит объективный характер и не зависит от системы отсчета.
Теория относительности, таким образом, сформулировала новое представление о пространстве и времени, обобщенное далее в диалектическом материализме. Пространственно-временные отношения являются не абсолютными величинами, как утверждала механика Галилея-Ньютона, а относительными. Следовательно, представления об абсолютном пространстве и времени являются несостоятельными. Кроме того, инвариантность интервала между двумя событиями свидетельствует о том, что пространство и время органически связаны между собой и образуют единую форму существования материи – пространство-время. Пространство и время не существуют вне материи и независимо от нее.
Дальнейшее развитие теории относительности (общая теория относительности, или теория тяготения) показало, что свойства пространства-времени в данной области определяются действующими в ней полями тяготения. При переходе к космическим масштабам геометрия пространства-времени не является евклидовой (т.е. не зависящей от размеров области пространства-времени), а изменяется от одной области к другой в зависимости от концентрации масс в этих областях и их движения.
Согласно представлениям классической механики, масса тела есть величина постоянная. Однако в конце XIX столетия на опытах с быстро движущимися электронами было установлено, что масса тела зависит от скорости его движения, а именно возрастает с увеличением скорости по закону
, (9.17)
где – масса покоя материальной точки, т.е. масса, измеренная в той инерциальной системе отсчета, относительно которой материальная точка находится в покое; с – скорость света в вакууме; т – масса точки в системе отсчета, относительно которой она движется со скоростью и. Из принципа относительности Эйнштейна, утверждающего инвариантность всех законов природы при переходе от одной инерциальной системы отсчета к другой, следует условие инвариантности уравнений физических законов относительно преобразований Лоренца. Основной закон динамики Ньютона оказывается также инвариантным по отношению к преобразованиям Лоренца, если в нем справа стоит производная по времени от релятивистского импульса.
Информация о работе Специальная теория относительности Эйнштейна