Автор работы: Пользователь скрыл имя, 25 Мая 2013 в 19:48, реферат
Нанонаука и производство наноразмерных материалов и изделий как одно из магистральных направлений развития современной науки и технологии заявили о себе в последние десять-пятнадцать лет. Это направление в области материаловедения и технологии активно развивается, захватывая все новые и новые области науки и промышленного производства.
Принципиальное значение малоразмерных объектов было подчеркнуто нобелевским лауреатом R.F. Feynman в лекции “There is plenty of room at the bottom: an invitation to enter a new field of physics”, прочитанной на заседании Американского Физического Общества в Калифорнийском технологическом институте 29 декабря 1959 г.
Военные нанотехнологии
Поскольку нанотрубки обладают рекордной прочностью на растяжение (модуль упругости приблизительно равен 1012 ТПа), не приходится удивляться тому, что входящие в состав дамасской стали углеродные нанотрубки обеспечивают материалу сабли столь высокие прочностные свойства.
В настоящее время военные исследования в области нанотехнологии ведутся по шести основным направлениям: энергетические ресурсы и боеприпасы, обеспечение и противодействие невидимости объектов, защитные и самовосстанавливающиеся системы, позволяющие автоматически ремонтировать поврежденную поверхность танка или самолета или менять ее цвет (эффект хамелеона), системы связи, а также устройства обнаружения химических и биологических загрязнений.
5 Наноустройства
Нанотрубки могут составлять основу новых конструкций плоских акустических систем и плоских дисплеев, то есть привычных макроскопических приборов. Из наноматериалов могут быть созданы определенные наноустройства, например нанодвигатели, наноманипуляторы, молекулярные насосы, высокоплотная память, элементы механизмов нанороботов. Кратко остановимся на моделях некоторых наноустройств.
Молекулярные шестерни и насосы. Модели наноустройств предложены К.Е. Drexler и R. Merkle из IMM (Institute for Molecular Manufacturing, Palo Alto). Валами шестеренок в коробке передач являются углеродные нанотрубки, а зубцами служат молекулы бензола. Характерные частоты вращения шестеренок составляют несколько десятков гигагерц. Устройства "работают" либо в глубоком вакууме, либо в инертной среде при комнатной температуре. Инертные газы используются для "охлаждения" устройства.
Алмазная память для компьютеров. Модель высокоплотной памяти разработана Ch. Bauschlicher и R. Merkle из NASA. Схема устройства проста и состоит из зонда и алмазной поверхности. Зонд представляет собой углеродную нанотрубку, заканчивающуюся полусферой С60, к которой кpeпится молекула C5H5N. Алмазная поверхность покрывается монослоем атомов водорода. Некоторые атомы водорода замещаются атомами фтора. При сканировании зонда вдоль алмазной поверхности, покрытой монослоем адсорбата, молекулу C5H5 N, согласно квантовым моделям, способна отличить адсорбированный атом фтора от адсорбированного атома водорода. Поскольку на одном квадратном сантиметре поверхности помещается около 1015 атомов, то плотность записи может достигать 100 терабайт на квадратный сантиметр.
Ассемблеры и дизассемблеры. Каким же образом можно манипулировать отдельными атомами и молекулами? С появлением туннельного микроскопа эта проблема была решена и с успехом применяется сегодня. Но нас сейчас интересуют наномашины, способные выполнять аналогичную работу сами. Решение такой задачи было предложено Эриком Дрекслером в своей книге «Машины созидания». По описанию автора, функцию манипулирования отдельными атомами и молекулами несут в себе ассемблеры (молекулярные машины, которые могут быть запрограммированы на создание молекулярной структуры любой сложности из более простых химических соединений или отдельных атомом или молекул). Эти устройства должны захватывать элементарные частицы и соединять их между собой в соответствии с заданным алгоритмом. Стоит отметить, что подобные системы существуют и в природе. В качестве примера работы ассемблеров можно привести, например, механизм синтеза белка рибосомой в клетке человека.
Антиподами ассемблеров
На данный момент многие научные коллективы ломают голову над созданием первого молекулярного ассемблера. Одни предлагают улучшение сканирующего туннельного микроскопа для достижения более высокой точности захвата и манипуляции атома. Другие – использовать химический синтез, а точнее, разработать химические компоненты, способные выполнять самосборку в растворе. Так же, не исключено, что создание первого ассемблера реализуется через биохимию. Природные наномашины - рибосомы ученые планируют использовать для создания более совершенных нанороботов.
Медицинский наноробот. Для совместимости организма человека с инородными объектами необходим материал, который не вызывает реакцию иммунной системы. Таким материалом может быть, например, алмазоид, представляющий собой мельчайшие кристаллики, из которых состоит микроскопическокий алмаз, полностью повторяющий его тетраэдрическую структуру. Ряд экспериментов подтвердил, что гладкие алмазоиды вызываю меньшую активность лейкоцитов. Антенны такого робота должны иметь вид диполей, выступающих за пределы корпуса, для приема незатухающих электромагнитных волн, распространяющихся в теле человека. Для надежной управляемости молекулярных роботов необходимо использовать нанокомпьютер. Сформировать навигационную систему и обеспечить связь роботов друг с другом поможет еще один тип наноустройств – коммуноциты, так же выполняющих роль усилительных станций.
Каким образом будет происходить процесс лечения? Для восстановления нормальной работы клетки необходима доставка к ней различных ферментов. Так же, используя ферменты, можно уничтожать различные вирусы, которые вызывают механизм клеточного апоптоза (программируемой клеточной смерти). Если же угроза не слишком велика и нет необходимости проникать внутрь поврежденного участка, достаточно инъекции специального вещества, вызывающего восстановления ДНК и возвращение клетки к нормальной работе.
Заключение
Современные возможности лабораторного эксперимента по наблюдению и изучению явлений в нанометровой шкале пространственных размеров и заманчивые перспективы создания уникальных материалов и наноустройств порождают новые теоретические проблемы. Необходимость конструктивного решения этих проблем ведет к интенсивным исследованиям, формирующим новые разделы в вычислительной физике и вычислительной химии.
Исследования в области
Время стремительно толкает нас к вершинам новых побед и открытий, нанороботы не являются исключением, все только в начале пути, а нам остается только наблюдать, как молекулярные наномашины будут изменять жизнь вокруг нас.