Автор работы: Пользователь скрыл имя, 25 Мая 2013 в 19:48, реферат
Нанонаука и производство наноразмерных материалов и изделий как одно из магистральных направлений развития современной науки и технологии заявили о себе в последние десять-пятнадцать лет. Это направление в области материаловедения и технологии активно развивается, захватывая все новые и новые области науки и промышленного производства.
Принципиальное значение малоразмерных объектов было подчеркнуто нобелевским лауреатом R.F. Feynman в лекции “There is plenty of room at the bottom: an invitation to enter a new field of physics”, прочитанной на заседании Американского Физического Общества в Калифорнийском технологическом институте 29 декабря 1959 г.
Охрана окружающей среды. Для очистки газовых выбросов разрабатываются фильтрующие мембраны из наноструктурированных материалов на основе оксида - гидрооксида алюминия или оксида железа. Пористость таких мембран регулируется размером составляющих ее наночастиц с размером 10-500 нм. При прохождении воздуха через такую мембрану происходит каталитическое окисление органических примесей, обезвреживание бактерий, вирусов и пестицидов. Использование благородных металлов и РЗЭ в виде наноструктурных покрытий монолитных блоков может обеспечить высокую степень очистки выхлопных газов от монооксида углерода и оксидов азота, углеводородов и альдегидов, которой требуют Евро-стандарты (Евро-3 и -4). В данном случае know how заключается в способе получения высокодисперсных (5-7 нм) частиц дорогих металлов, чтобы не слишком повышать себестоимость нейтрализаторов и, в целом, автомобилей.
Электроника. Широкое использование наноматериалов может изменить лицо электроники. По мнению директора института фундаментальной электроники J.-M. Lourtioz (Франция), это потребует полного переосмысления архитектуры микросхем. Идея заключается в том, чтобы воспроизвести трехмерную схему по образцу мозга, в котором каждая клетка связана с несколькими тысячами таких же соседей. Это приведет к значительному выигрышу в скорости и появлению новых функций. Схема должна быть способна к самоорганизации, установлению внутренних связей и изменению конфигурации в соответствии с поставленной задачей. Решение одновременно и проблемы миниатюризации транзистора исследователи видят в создании блока памяти процессора с использованием нанокристалла, в котором каждый бит информации (0 или 1) обеспечен одним электроном. Специалисты связывают будущее электроники с гибридными системами, сочетающими в себе различные технологии, начало эры гибридной наноэлектроники относят к 2000 г. Эти «гибриды» должны помочь в решении нескольких проблем, связанных с усовершенствованием запоминающих элементов.
Для решения проблемы энергосбережения решили использовать не только заряды электронов, но и их спины. Пионером в новой области электроники, получившей название спинтроники, является Albert Fert, удостоенный в 2003 г. Золотой медали Национального Центра Научных Исследований Франции. Основные преставления в спинтронике базируются на том положении, что электрон, обладая спином, является крошечным магнитом. Использование свойств спина электрона позволило создать такие наноэлементы для записывающего устройства, в которых ориентация намагниченности может сохраняться много дольше, чем электрический заряд в обычных блоках памяти. Это создает преимущества новых устройств при записи информации на жесткие диски и позволяет ускорить разработку новых блоков скоростной магнитной записи в память. Подобные блоки уже испытывают в космических исследованиях и рассматривают как весьма перспективные для использования в недалеком будущем в компьютерах. Работы по сочетанию магнитного и электрического способов записи были начаты еще в 1988 г., когда появилось понятие «спиновый клапан». Благодаря этому клапану, используемому в считывающей головке драйвера жесткого диска, в ближайшие несколько лет планируется увеличить плотность записи с 0.15 до 80 Гб/см2. Новый материал носителей информации нелетуч и устойчив к радиации, что очень важно для использования в аэронавтике и космонавтике. Спинтроника может обеспечить прорыв в исследованиях возможности магнитной записи информации без использования внешнего магнитного поля, но только благодаря процессу переноса спинового момента. Когда ток проходит через наноустройство, спин электронов реагирует непосредственно со спином электронов материала магнитного слоя, ориентируя их в определенном направлении, подобно «эффекту домино». При этом спин одного электрона ориентирует спин другого, и так – один за другим.
Синтез и изучение одномолекулярных наномашин (менее 1 нм), способных к расчету, механическому и коммуникативному действиям - одно из новых направлений в нанонауке. Цель – создать машину, состоящую из наименьшего числа атомов: молекулярная «тачка» ловит атом, присоединяет его к себе и «переносит» в нужном направлении. Сложность заключается в необходимости тщательного контроля условий химического синтеза таких машин, но полученные результаты закладывают основы для создания в будущем нанороботов с большим набором функций.
Композиты. Молекулярный дизайн полимеров, синтез дендримеров и сложных блок-сополимеров – это те направления в деятельности создателей новых композитных материалов, которые можно считать в настоящее время основными. Большое внимание также привлекают материалы, получаемые включением металлических наночастиц в полимерную матрицу. Так, английскими учеными показано, что включение кобальт-железных металлических наночастиц (5 об. %) в блоксополимер приводит к так называемому наноэффекту, который проявляется в повышенной устойчивости материала к нагрузкам. Нанокомпозиты, содержащие даже 2 об. % минеральных наночастиц, обладают физическими характеристиками, на 10 - 125% превышающими ненаполненные аналоги, а температура деструкции при этом повышается с 65 до 150 °С. Большая часть композитов, содержащих неорганические наночастицы, пользуются повышенным коммерческим спросом. По прогнозам, к 2010 г. потребность в таких композитах возрастет до 600,000 т, а сфера их применения охватит такие важные отрасли промышленности, как производство средств связи, антикоррозионных покрытий (1 - 5 нм), УФ-защитных гелей, устойчивых красителей, новых огнезащитных материалов, сверхпрочных материалов, высококачественных волокон и пленок, ультрадисперсных (0.1 мм) порошков тяжелых металлов (вольфрама, кобальта и др.). Поэтому аналитики Великобритании связывают экономический рост своей страны в ближайшие 20 лет с переходом многих отраслей на производство и использование наноструктурированных материалов и нанокомпозитов.
Химическое производство и нефтехимия. Особое место среди многочисленных возможностей наноматериалов занимает их использование в тонком химическом синтезе и нефтехимическом производстве как в виде реагентов, так и в качестве катализаторов. Для катализа нанообъекты представляют особый интерес, так как наноструктурированные катализаторы обладают повышенной активностью, способны работать и при пониженных температурах, и при повышенных объемных скоростях. Особый интерес вызывают высокопористые катализаторы с размером пор до 50 нм (на микрофотографиях представлены ультрадисперсные порошки мезопористых материалов на основе SiO2 c размерами пор 2 – 14 нм). Мезопору (2 - 50 нм) рассматривают как нанореактор, размеры которого часто соизмеримы с размерами молекул. Установлено, что в таких порах химические реакции нередко протекают по нетривиальным маршрутам. Поэтому особый интерес представляют исследования структуры, свойств поверхности, природы активных центров, изучение на молекулярном и наноуровне процессов превращения веществ и их подвижности внутри мезопор катализаторов. Понимание этих процессов позволит заложить основы конструирования катализаторов нового поколения на наноуровне и создания новых методов синтеза, в ходе которых можно было бы контролировать размерность формируемых объектов.
Углеродные нанотрубки. Из всего множества нанообъектов наиболее известными и изученными являются углеродные нанотрубки, открытые в 1991 г. Диаметр трубок составляет обычно от 1 до 100 нм, длина – около 1 мкм. Они обладают интересными оптическими, химическими и механическими свойствами (высокая устойчивость к разрыву и деформации), могут быть прекрасными полупроводниками. Их применение охватывает производство полимерных композитов и топливных батарей, электронику и др. Свойства углеродных нанотрубок зависят от количества слоев графита и от способа их скручивания.
Наиболее активно
В октябре 2006 г. в Белфасте (Великобритания) на очередном научно-практическом семинаре выделены следующие актуальные направления исследований:
Конференция “Commercialization of NanoMaterials 2006” (Питсбург, сентябрь 2006 г.) выделила следующие коммерческие перспективные направления:
Эволюционная нанотехнология
Эволюционная нанотехнология связана с наномеханизмами, работы над которыми находятся на начальном этапе.
Как уже было отмечено, по идее К. Э. Дрекслера, из фуллеренов, нанотрубок, наноконусов и других аналогичных структур могут быть собраны молекулы в форме разнообразных нанодеталей — зубчатых колес, штоков, деталей подшипников и других узлов, роторов молекулярных турбин, подвижных узлов манипуляторов и т.д. Сборка готовых деталей в работоспособную механическую конструкцию может осуществляться с использованием СЗМ или ассемблеров (самосборщиков) с прикрепленными к деталям биологическими макромолекулами, способными избирательно соединяться друг с другом.
Изделия, созданные на основе оптимальной сборки атомов и молекул, будут иметь предельно высокие характеристики.
На рисунке приведены примеры простейших и довольно сложных механических конструкций, рассчитанных методами молекулярной динамики и собранных из нанокомпонентов.
Наибольшего прогресса в этом направлении достигли японские ученые из университета префектуры Айти вместе с коллегами из токийского университета Сэйкэй, создавшие микроскопический «подшипник», в котором потери на трение настолько незначительны, что даже самые точные современные приборы не способны их зарегистрировать. Силу трения, которую измеряли при помощи силового зондового микроскопа, зафиксировать не удалось, так как она оказалась меньше триллионной доли Ньютона, что пока измерить невозможно.
Материалом для «вечного» мини-подшипника послужили синтетические молекулы — фуллерены. В данном случае они состояли из 60 атомов углерода, расположенных в виде правильных пяти- и шестиугольников, которые вместе составляли шар. Эти вращающиеся «шарики» после сложного технологического процесса поставили в ряд между двумя удлиненными пластинками из графита.
В данном случае был реализован принцип безызносного подшипника, простейшая схема работы которого представлена на риунке. Это достижение нанотехнологии, по мнению ученых, планируется использовать в производстве миниатюрных роботов и микромеханизмов, детали которых практически не будут изнашиваться.
Рисунок 7 - Простейшие шестеренные передачи (разработка NASA)
Рисунок 8 - Сборочные единицы наноподшипника
Рисунок 9 – Сборка конструкций наноманипуляторами
Нанотехнологии в строительстве
Естественно, что и основные разработки в этой области должны быть направлены на создание новых, более прочных, легких и дешевых строительных материалов, а также улучшение уже имеющихся материалов: металлоконструкций и бетона, за счет их легирования нанопорошками.
Определенные успехи в этой области уже достигнуты. Как сообщает Nano News Net, российские ученые из Санкт-Петербурга, Москвы и Новочеркасска создали нанобетон. Специальные добавки — так называемые наноинициаторы — значительно улучшают его механические свойства. Предел прочности нанобетона в 1,5 раза выше прочности обычного, морозостойкость выше на 50%, а вероятность появления трещин — в три раза ниже. При этом вес бетонных конструкций, изготовленных с применением наноматериалов, снижается в шесть раз. Разработчики утверждают, что применение подобного бетона удешевляет конечную стоимость конструкций в 2—3 раза.
Также отмечается и ряд восстанавливающих свойств бетона. При нанесении на железобетонную конструкцию нанобетон заполняет все микропоры и микротрещины и полимеризуется, восстанавливая ее прочность. Если же проржавела арматура, новое вещество вступает в реакцию с коррозийным слоем, замещает его и восстанавливает сцепление бетона с арматурой.
Другое
направление практического
В ассортименте окрасочных материалов немецкой фирмы Alligator появился инновационный материал, разработанный на основе нанотехнологии, — фасадная силикатная краска Kieselit-Fusion с уникальными характеристиками. Она была впервые представлена на выставке в Кельне в апреле 2005 года. Материал с наноструктурой обеспечивает высокую адгезию покрытия не только к минеральным типам подложек, но и к органическим основаниям. Благодаря сверхмалым размерам частиц достигается также высокая прочность и стойкость покрытия к внешним воздействиям, в том числе к мокрому истиранию (класс 1 согласно EN 13300). Комбинация пигментов-наполнителей в сочетании с наноструктурной поверхностью является решающей для фотокаталитического действия краски — грязь на окрашенной поверхности распадается благодаря воздействию света. Сочетание наноструктуры и светостойких пигментов обеспечивает как высокую насыщенность цвета, так и устойчивость покрытия к ультрафиолетовому излучению в целом, что позволяет фасаду зданий и сооружений долгое время сохранять первозданный внешний вид.
Один из примеров использования нанотехнологии — разработка новых окрашивающих материалов для поездов, которая призвана защитить поверхность вагонов от рисования и нанесения надписей, делая ее настолько гладкой, что никакие другие краски не могут на ней закрепиться.
Наноинженерия поверхности деталей
Одним из направлений исследований в области нанотехнологий является наноинженерия поверхностей трущихся деталей, то есть создание методов и технологий формирования поверхностей с оптимальными прочностными и триботехническими свойствами на всех этапах жизненного цикла машиностроительного объекта.