Механические флотационные машины

Автор работы: Пользователь скрыл имя, 07 Апреля 2013 в 13:42, реферат

Краткое описание

По способу перемешивания и аэрации пульпы большинство применяемых в настоящее время флотационных машин разделяются на: механические, в которых перемешивание пульпы и засасывание воздуха осуществляются импеллером; пневмомеханические, в которых перемешивание пульпы, осуществляется импеллером, а воздух подается от воздуходувки; пневматические, в которых перемешивание и аэрация пульпы осуществляются подачей сжатого воздуха. Возможны комбинации этих способов. Так, в некоторых машинах механического типа осуществляется дополнительная подача воздуха воздуходувкой.

Прикрепленные файлы: 1 файл

maxreferat36148.doc

— 7.14 Мб (Скачать документ)

При вращении ротора из атмосферы  через центральную трубу засасывается воздух, а снизу — пульпа. Воздух и пульпа смешиваются в полости ротора, и пульповоздушная смесь выбрасывается через отверстия статора в камеру в радиальном (а не тангенциальном) направлении, так как благодаря большому зазору турбулентные потоки в значительной степени гасятся в пространстве между ротором и статором. Радиальный выброс аэрированной пульпы способствует более равномерному распределению воздушных пузырьков по объему камеры.

 

 

 

 

 

Рис. 2. Флотационная машина "Вемко": а — поперечный разрез; б — ротор и статор конструкции. 1 + 1: 1- ротор; 2 - камера; 3 - статор; 4 - центральная труба; 5 -труба для засасывания воздуха; 6 - конический перфорированный колпак; 7 - циркуляционная труба; 8 - перфорированное ложное днище; С — зазор между ротором и статором; d — глубина погружения ротора

 

Для создания на поверхности пульпы спокойной зоны пенообразования на центральной трубе установлен конический перфорированный колпак.

В камерах  вместимостью 2,83 м3 и более для усиления циркуляции пульпы установлено ложное дно, не доходящее до стенок камеры, с циркуляционной трубой. Пульпа, выброшенная ротором к стенкам камеры, проходит между настоящим и ложным дном и через циркуляционную трубу засасывается ротором вверх. Такая циркуляция препятствует осаждению материала на дне камеры, что позволяет увеличить глубину камеры с 686 (№ 66) до 2667 мм (№ 190). При этом расстояние от поверхности пульпы до верхней кромки ротора в камерах большей глубины по сравнению с мелкими камерами изменяется незначительно.

Так, для камеры вместимостью 28,32 м3 (№164) глубина погружения ротора составляет в стандартных условиях всего 250 мм. Малая глубина погружения ротора обеспечивает засасывание в машину значительных объемов воздуха. Фирма указывает, что максимальный расход воздуха составляет для машин всех размеров 1 м3/мин на 1 м3 вместимости камеры. Номинальный расход воздуха для больших номеров машин приблизительно равен 0,5 (№ 120), 0,5 (№ 144) и 0,4 м3/мин на 1 м3 вместимости камеры (№№ 164, 190), что соответственно составляет 0,8—1 м3 /мин на 1 м2 сечения камеры.

Съем  пены в машинах "Вемко" обычно двусторонний и осуществляется самотеком, однако при необходимости для удаления пены используется пеногон. Машина состоит из отдельных прямоточных звеньев, устанавливаемых каскадно.

Наибольшее  число камер в звене равно  шести для машин до № 120 включительно, пяти — для машин № 144 и четырем — для машин №№ 164, 190. Звенья машины соединяют посредством промежуточных карманов. В конце машины устанавливается разгрузочный карман. Регулирование уровня пульпы в промежуточных и разгрузочных карманах может быть ручным и автоматическим. Пульпа поступает в машину самотеком через приемный карман, перетекает из камеры в камеру через отверстия в межкамерных перегородках и промежуточных карманах и выпускается через разгрузочный карман. Реагенты и промпродукты могут подаваться в приемный и промежуточные карманы. Промпродукты подаются насосами.

Технические характеристики машин "Вемко" приведены  в табл. 3.

В последние  годы фирма "Вемко" разработала  конструкцию машины, в которой  вместо воздуха используется азот. Машина получила название "Инертный газ". Необходимость разработки была вызвана применением на ряде фабрик при разделении медно-молибденового концентрата азота вместо воздуха с целью снижения расхода подавителя сульфидов меди — гидросульфида натрия.

В основе конструкции машины "Инертный газ" лежит стандартная машина "Вемко". Она состоит из ряда камер, собранных в единую установку. Камеры и желоба герметизированы, над ними имеется замкнутое пространство. В начальный момент в машину из атмосферы засасывается воздух. В пульпе кислород, содержащийся в воздухе, расходуется на окисление гидросульфида натрия, а оставшийся почти чистый азот используется в качестве флотационного газа. Частично азот выделяется из пульпы при разрушении пены и собирается в замкнутом пространстве над машиной, частично уходит с пенным и камерным продуктами.

Для извлечения азота из камерного продукта последняя камера машины превращена в камеру дегазации. В ней вместо блока "Вемко" смонтирован корабельный  винт. Частота вращения винта обеспечивает только взвешивание частиц и позволяет пузырькам азота выделиться из пульпы и собраться в замкнутом пространстве над машиной. Для извлечения азота из пенного продукта последний поступает в буферный чан, а оттуда в дегазатор.

В дегазаторе под действием центробежной силы и вакуума из пенного продукта выделяется азот, направляемый в замкнутое пространство под машиной, а обезгаженный концентрат через буферный чан идет на дальнейшие операции. Собранный в замкнутом пространстве азот вновь засасывается в пульпу и таким образом многократно используется для флотации.

Машина "Инертный газ" производит азот из воздуха, ей не требуются специальные  источники азота. Применение машины № 66 на фабрике Твин—Бьютте в  основной молибденовой флотации позволило  уменьшить расход подавителя на 68 %.

Флотационные машины "Вемко" применяются при обогащении медных, медно-молибденовых, свинцово-цинковых, полиметаллических, железных, фосфатных  и других руд на обогатительных фабриках многих стран. Машины больших размеров установлены на ряде зарубежных предприятий, реконструированных и построенных в последние годы: "Чайно", "Пима", "Магна" и "Артур" (США), "Квеста" (Канада), "Эль-Тениенте" и "Чукикамата" (Чили) , "Кобриза" (Перу) и др.

 

 

Таблица 3. Технические характеристики флотационных машин “Вемко”

№ машины

Размеры камеры, мм

Вместимость камеры, м3

Диаметр ротора, мм

Окружная скорость ротора, м/с

Установочная мощность электродвигателя на одну камеру, кВт

18

28

36

44

56

66

66Д

84

120

144

164

190

305х457х254

457х711х305

914х914х406

1118х1118х508

1422х1422х610

1676х1676х686

1524х1676х1194

1600х2134х1346

2286х3048х1346

2743х3658х1600

3023х4166х2362

3556х4826х2667

0,03

0,09

0,31

0,59

1,13

1,7

2,83

4,25

8,49

14,16

28,32

42,48

89

140

178

216

279

324

406

406

559

660

762

889

4,6

5,1

5,3

5,6

6,2

6,4

5,7

6,6

6,4

6,6

7,4

7,7

0,4

0,7-1,1

2,2

3,7

5,5

7,4

11,0

11,0

18,4-22,1

22,1-29,4

44,2-55,2

73,6-92,0


 

2. Пневмомеханические  флотационные машины

 

Отличительной особенностью пневмомеханических флотационных машин является то, что  в этих машинах импеллер вращается  с частотой, необходимой для поддержания частиц во взвешенном состоянии и тонкого диспергирования воздуха, а воздух подается в машину от воздуходувки, что позволяет по сравнению с механическими флотационными машинами обеспечить постоянный расход воздуха в машине независимо от износа аэраторов и осуществить регулирование расхода воздуха по фронту флотации.

Флотационная пневмомеханическая машина ФПМ имеет квадратные камеры, в каждой из которых расположен аэратор.

В машинах с камерами вместимостью 3,2; 6,3 и 8,5 м3 аэратор представляет собой перевернутый усеченный конус с отверстием по нижнему сечению конуса (рис. 3). Основанием конуса служит диск, выступающий за края конуса. На внешней поверхности конуса расположены нарифления в виде усеченного конуса. Основаниями нарифления крепятся к диску аэратора, а их концы расположены на небольшом расстоянии от кромки нижней части аэратора. На диске имеются радиальные полуцилиндрические выступы. Внутри конуса проходит воздушный канал, который соединяется с полым валом.

У вращающегося аэратора вследствие различия окружных скоростей его верхней и нижней частей центробежное действие усиливается снизу вверх, что приводит к возникновению потока вдоль образующих конуса. У основания конуса поток делится на части и движется к стенкам камеры, а затем по дну камеры возвращается к аэратору. Воздух по полому валу в нижнем сечении конуса выходит в камеру, смешивается с потоком пульпы и увлекается вверх, концентрируясь в областях пониженного давления за нарифлениями. Возникающие на границе воздушных полостей с пульпой вихри диспергируют воздух. Пульповоздушная смесь при сходе с' диска аэратора выбрасывается в камеру.

Машина компонуется из прямоточных  звеньев. Звенья могут быть установлены  на одном уровне иди каскадно. В  последнем случае в головных камерах прямоточных звеньев устанавливается блок импеллера механического типа. Механические блоки также позволяют возвращать промежуточные продукты по принятой схеме без применения насосов.

 


 

 

 

Рис. 3 Флотационная машина ФПМ с коническим аэратором: а — поперечный разрез; б — аэратор: / — корпус камеры; 2 - импеллер; 3 -полый вал; 4 — лопатки успокоителя; 5 — диск; б — нарифления; 7 — радиальные полуцилиндрические выступы

 

Съем пены осуществляется пеногоном.

В машине ФПМ 8,5 с камерой вместимостью 8,5 м3 и глубиной 1,8 м конический аэратор сверху дополнительно снабжен лопастями, закрытыми диском с отверстием в центре для прохода пульпы. Благодаря наличию лопастей достигаются интенсивное перемешивание и равномерное распределение частиц по всему объему камеры.


 

 

 

Рис. 4 Флотационная машина ФПМ 12,5: а — поперечный разрез; б — импеллер; в - импеллер упрощенной конструкции: 1 — корпус камеры; 2 — блок импеллера; 3 — привод импеллера; 4 — вентиль; 5 — воздуховод; 6 — пеногон; 7 — крыльчатка; 8 — конус

 

В машине ФПМ 12,5 с камерой вместимостью 12,5 м3 (рис.4, а) установлен лопастной импеллер (см. рис. 4, б), представляющий собой ступицу, связанную восемью радиальными лопастями с диском, в нижней части которого имеется конический раструб. Сверху на ступице закреплен конус, обеспечивающий раздельный подвод верхнего и нижнего потоков пульпы.

Импеллер крепится на полом валу, над импеллером размещен дис-пергатор-диск с 24 радиальными лопатками. Диспергатор  крепится к циркуляционной воронке, которая в свою очередь закреплена на центральной трубе. При вращении импеллера через нижний раструб засасывается пульпа, которая вместе с воздухом, поступающим по полому t валу, идет через окна между радиальными лопастями в зону лопаток, где воздух диспергируется. Затем пульповоздушная смесь смешивается с верхним потоком пульпы, поступающим через циркуляционную воронку, и выбрасывается в камеру через промежутки между лопатками диспергатора, который снижает турбулентность потоков пульпы в камере, способствует тонкому диспергированию воздуха и обеспечивает равномерное распределение воздуха в камере. Импеллер и диспергатор гуммируются.

На рис. 4, в показан импеллер упрощенной конструкции к машине ФПМ 12,5.

Импеллер флотационной машины ФПМ 25 с вместимостью камеры 25 м3 принципиально не отличается от импеллера, изображенного на рис.4,в.

В настоящее время институтом "Механобр" создана флотационная машина ФПМ 40 с камерой вместимостью 40 м3 и бесстаторным аэратором. Машина успешно эксплуатируется на одной из медно-никелевых фабрик. Промышленные испытания, проведенные на фабрике, перерабатывающей медно-никелевые руды, показали, что при близких технологических показателях аэратор машины ФПМ 40 потребляет на 30-35 % меньше электроэнергии, чем аэратор ОК-38. Аэратор такой же конструкции создан для машины ФПМ 12,5. Успешные испытания этого аэратора проведены на фабрике, перерабатывающей медно-цинковые руды.

Технические характеристики машин  ФПМ приведены в табл.4.

Флотационная машина "Аджитейр" выпускается в настоящее время фирмой "Вемко" (США). В последние годы широко известная конструкция машины с пальцевым импеллером и квадратным успокоителем была существенно усовершенствована применительно к большеобъемным машинам.

Машина состоит из квадратных или  прямоугольных камер со скошенными углами, в которых установлены импеллер типа "пипса" и радиальный успокоитель. Нижняя часть импеллера "пипса" представляет собой плоский диск с прикрепленными к нему снизу пальцами. В верхней части импеллера "пипса" имеется конический диск с отверстием в центре для подачи пульпы. Между коническим и плоским дисками расположены лопатки.

Нижняя часть импеллера работает как обычный пальцевый импеллер, создавая донную циркуляцию пульпы и  диспергируя воздух. Верхняя часть  импеллера работает как лопастной  импеллер центробежного типа — пульпа поступает на лопатки через отверстие в центре конического диска и выбрасывается к стенкам камеры. Это создает дополнительное перемешивание и циркуляцию пульпы в камере и облегчает запуск машины после аварийных остановок."

Информация о работе Механические флотационные машины