Автор работы: Пользователь скрыл имя, 07 Апреля 2013 в 13:42, реферат
По способу перемешивания и аэрации пульпы большинство применяемых в настоящее время флотационных машин разделяются на: механические, в которых перемешивание пульпы и засасывание воздуха осуществляются импеллером; пневмомеханические, в которых перемешивание пульпы, осуществляется импеллером, а воздух подается от воздуходувки; пневматические, в которых перемешивание и аэрация пульпы осуществляются подачей сжатого воздуха. Возможны комбинации этих способов. Так, в некоторых машинах механического типа осуществляется дополнительная подача воздуха воздуходувкой.
При вращении ротора из атмосферы
через центральную трубу
Рис. 2. Флотационная машина "Вемко": а — поперечный разрез; б — ротор и статор конструкции. 1 + 1: 1- ротор; 2 - камера; 3 - статор; 4 - центральная труба; 5 -труба для засасывания воздуха; 6 - конический перфорированный колпак; 7 - циркуляционная труба; 8 - перфорированное ложное днище; С — зазор между ротором и статором; d — глубина погружения ротора
Для создания на поверхности пульпы спокойной зоны пенообразования на центральной трубе установлен конический перфорированный колпак.
В камерах вместимостью 2,83 м3 и более для усиления циркуляции пульпы установлено ложное дно, не доходящее до стенок камеры, с циркуляционной трубой. Пульпа, выброшенная ротором к стенкам камеры, проходит между настоящим и ложным дном и через циркуляционную трубу засасывается ротором вверх. Такая циркуляция препятствует осаждению материала на дне камеры, что позволяет увеличить глубину камеры с 686 (№ 66) до 2667 мм (№ 190). При этом расстояние от поверхности пульпы до верхней кромки ротора в камерах большей глубины по сравнению с мелкими камерами изменяется незначительно.
Так, для камеры вместимостью 28,32 м3 (№164) глубина погружения ротора составляет в стандартных условиях всего 250 мм. Малая глубина погружения ротора обеспечивает засасывание в машину значительных объемов воздуха. Фирма указывает, что максимальный расход воздуха составляет для машин всех размеров 1 м3/мин на 1 м3 вместимости камеры. Номинальный расход воздуха для больших номеров машин приблизительно равен 0,5 (№ 120), 0,5 (№ 144) и 0,4 м3/мин на 1 м3 вместимости камеры (№№ 164, 190), что соответственно составляет 0,8—1 м3 /мин на 1 м2 сечения камеры.
Съем пены в машинах "Вемко" обычно двусторонний и осуществляется самотеком, однако при необходимости для удаления пены используется пеногон. Машина состоит из отдельных прямоточных звеньев, устанавливаемых каскадно.
Наибольшее число камер в звене равно шести для машин до № 120 включительно, пяти — для машин № 144 и четырем — для машин №№ 164, 190. Звенья машины соединяют посредством промежуточных карманов. В конце машины устанавливается разгрузочный карман. Регулирование уровня пульпы в промежуточных и разгрузочных карманах может быть ручным и автоматическим. Пульпа поступает в машину самотеком через приемный карман, перетекает из камеры в камеру через отверстия в межкамерных перегородках и промежуточных карманах и выпускается через разгрузочный карман. Реагенты и промпродукты могут подаваться в приемный и промежуточные карманы. Промпродукты подаются насосами.
Технические характеристики машин "Вемко" приведены в табл. 3.
В последние годы фирма "Вемко" разработала конструкцию машины, в которой вместо воздуха используется азот. Машина получила название "Инертный газ". Необходимость разработки была вызвана применением на ряде фабрик при разделении медно-молибденового концентрата азота вместо воздуха с целью снижения расхода подавителя сульфидов меди — гидросульфида натрия.
В основе конструкции машины "Инертный газ" лежит стандартная машина "Вемко". Она состоит из ряда камер, собранных в единую установку. Камеры и желоба герметизированы, над ними имеется замкнутое пространство. В начальный момент в машину из атмосферы засасывается воздух. В пульпе кислород, содержащийся в воздухе, расходуется на окисление гидросульфида натрия, а оставшийся почти чистый азот используется в качестве флотационного газа. Частично азот выделяется из пульпы при разрушении пены и собирается в замкнутом пространстве над машиной, частично уходит с пенным и камерным продуктами.
Для извлечения азота из камерного продукта последняя камера машины превращена в камеру дегазации. В ней вместо блока "Вемко" смонтирован корабельный винт. Частота вращения винта обеспечивает только взвешивание частиц и позволяет пузырькам азота выделиться из пульпы и собраться в замкнутом пространстве над машиной. Для извлечения азота из пенного продукта последний поступает в буферный чан, а оттуда в дегазатор.
В дегазаторе под действием центробежной силы и вакуума из пенного продукта выделяется азот, направляемый в замкнутое пространство под машиной, а обезгаженный концентрат через буферный чан идет на дальнейшие операции. Собранный в замкнутом пространстве азот вновь засасывается в пульпу и таким образом многократно используется для флотации.
Машина "Инертный газ" производит азот из воздуха, ей не требуются специальные источники азота. Применение машины № 66 на фабрике Твин—Бьютте в основной молибденовой флотации позволило уменьшить расход подавителя на 68 %.
Флотационные машины "Вемко" применяются при обогащении медных, медно-молибденовых, свинцово-цинковых, полиметаллических, железных, фосфатных и других руд на обогатительных фабриках многих стран. Машины больших размеров установлены на ряде зарубежных предприятий, реконструированных и построенных в последние годы: "Чайно", "Пима", "Магна" и "Артур" (США), "Квеста" (Канада), "Эль-Тениенте" и "Чукикамата" (Чили) , "Кобриза" (Перу) и др.
Таблица 3. Технические характеристики флотационных машин “Вемко”
№ машины |
Размеры камеры, мм |
Вместимость камеры, м3 |
Диаметр ротора, мм |
Окружная скорость ротора, м/с |
Установочная мощность электродвигателя на одну камеру, кВт |
18 28 36 44 56 66 66Д 84 120 144 164 190 |
305х457х254 457х711х305 914х914х406 1118х1118х508 1422х1422х610 1676х1676х686 1524х1676х1194 1600х2134х1346 2286х3048х1346 2743х3658х1600 3023х4166х2362 3556х4826х2667 |
0,03 0,09 0,31 0,59 1,13 1,7 2,83 4,25 8,49 14,16 28,32 42,48 |
89 140 178 216 279 324 406 406 559 660 762 889 |
4,6 5,1 5,3 5,6 6,2 6,4 5,7 6,6 6,4 6,6 7,4 7,7 |
0,4 0,7-1,1 2,2 3,7 5,5 7,4 11,0 11,0 18,4-22,1 22,1-29,4 44,2-55,2 73,6-92,0 |
2. Пневмомеханические флотационные машины
Отличительной особенностью пневмомеханических флотационных машин является то, что в этих машинах импеллер вращается с частотой, необходимой для поддержания частиц во взвешенном состоянии и тонкого диспергирования воздуха, а воздух подается в машину от воздуходувки, что позволяет по сравнению с механическими флотационными машинами обеспечить постоянный расход воздуха в машине независимо от износа аэраторов и осуществить регулирование расхода воздуха по фронту флотации.
Флотационная
В машинах с камерами вместимостью 3,2; 6,3 и 8,5 м3 аэратор представляет собой перевернутый усеченный конус с отверстием по нижнему сечению конуса (рис. 3). Основанием конуса служит диск, выступающий за края конуса. На внешней поверхности конуса расположены нарифления в виде усеченного конуса. Основаниями нарифления крепятся к диску аэратора, а их концы расположены на небольшом расстоянии от кромки нижней части аэратора. На диске имеются радиальные полуцилиндрические выступы. Внутри конуса проходит воздушный канал, который соединяется с полым валом.
У вращающегося аэратора вследствие различия окружных скоростей его верхней и нижней частей центробежное действие усиливается снизу вверх, что приводит к возникновению потока вдоль образующих конуса. У основания конуса поток делится на части и движется к стенкам камеры, а затем по дну камеры возвращается к аэратору. Воздух по полому валу в нижнем сечении конуса выходит в камеру, смешивается с потоком пульпы и увлекается вверх, концентрируясь в областях пониженного давления за нарифлениями. Возникающие на границе воздушных полостей с пульпой вихри диспергируют воздух. Пульповоздушная смесь при сходе с' диска аэратора выбрасывается в камеру.
Машина компонуется из прямоточных звеньев. Звенья могут быть установлены на одном уровне иди каскадно. В последнем случае в головных камерах прямоточных звеньев устанавливается блок импеллера механического типа. Механические блоки также позволяют возвращать промежуточные продукты по принятой схеме без применения насосов.
Рис. 3 Флотационная машина ФПМ с коническим аэратором: а — поперечный разрез; б — аэратор: / — корпус камеры; 2 - импеллер; 3 -полый вал; 4 — лопатки успокоителя; 5 — диск; б — нарифления; 7 — радиальные полуцилиндрические выступы
Съем пены осуществляется пеногоном.
В машине ФПМ 8,5 с камерой вместимостью 8,5 м3 и глубиной 1,8 м конический аэратор сверху дополнительно снабжен лопастями, закрытыми диском с отверстием в центре для прохода пульпы. Благодаря наличию лопастей достигаются интенсивное перемешивание и равномерное распределение частиц по всему объему камеры.
Рис. 4 Флотационная машина ФПМ 12,5: а — поперечный разрез; б — импеллер; в - импеллер упрощенной конструкции: 1 — корпус камеры; 2 — блок импеллера; 3 — привод импеллера; 4 — вентиль; 5 — воздуховод; 6 — пеногон; 7 — крыльчатка; 8 — конус
В машине ФПМ 12,5 с камерой вместимостью 12,5 м3 (рис.4, а) установлен лопастной импеллер (см. рис. 4, б), представляющий собой ступицу, связанную восемью радиальными лопастями с диском, в нижней части которого имеется конический раструб. Сверху на ступице закреплен конус, обеспечивающий раздельный подвод верхнего и нижнего потоков пульпы.
Импеллер крепится на полом валу, над импеллером размещен дис-пергатор-диск с 24 радиальными лопатками. Диспергатор крепится к циркуляционной воронке, которая в свою очередь закреплена на центральной трубе. При вращении импеллера через нижний раструб засасывается пульпа, которая вместе с воздухом, поступающим по полому t валу, идет через окна между радиальными лопастями в зону лопаток, где воздух диспергируется. Затем пульповоздушная смесь смешивается с верхним потоком пульпы, поступающим через циркуляционную воронку, и выбрасывается в камеру через промежутки между лопатками диспергатора, который снижает турбулентность потоков пульпы в камере, способствует тонкому диспергированию воздуха и обеспечивает равномерное распределение воздуха в камере. Импеллер и диспергатор гуммируются.
На рис. 4, в показан импеллер упрощенной конструкции к машине ФПМ 12,5.
Импеллер флотационной машины ФПМ 25 с вместимостью камеры 25 м3 принципиально не отличается от импеллера, изображенного на рис.4,в.
В настоящее время институтом "Механобр" создана флотационная машина ФПМ 40 с камерой вместимостью 40 м3 и бесстаторным аэратором. Машина успешно эксплуатируется на одной из медно-никелевых фабрик. Промышленные испытания, проведенные на фабрике, перерабатывающей медно-никелевые руды, показали, что при близких технологических показателях аэратор машины ФПМ 40 потребляет на 30-35 % меньше электроэнергии, чем аэратор ОК-38. Аэратор такой же конструкции создан для машины ФПМ 12,5. Успешные испытания этого аэратора проведены на фабрике, перерабатывающей медно-цинковые руды.
Технические характеристики машин ФПМ приведены в табл.4.
Флотационная машина "Аджитейр" выпускается в настоящее время фирмой "Вемко" (США). В последние годы широко известная конструкция машины с пальцевым импеллером и квадратным успокоителем была существенно усовершенствована применительно к большеобъемным машинам.
Машина состоит из квадратных или прямоугольных камер со скошенными углами, в которых установлены импеллер типа "пипса" и радиальный успокоитель. Нижняя часть импеллера "пипса" представляет собой плоский диск с прикрепленными к нему снизу пальцами. В верхней части импеллера "пипса" имеется конический диск с отверстием в центре для подачи пульпы. Между коническим и плоским дисками расположены лопатки.
Нижняя часть импеллера