Автор работы: Пользователь скрыл имя, 09 Октября 2014 в 05:31, курс лекций
Теория автоматического управления (ТАУ) появилась во второй половине 19 века сначала как теория регулирования. Широкое применение паровых машин вызвало потребность в регуляторах, то есть в специальных устройствах, поддерживающих устойчивый режим работы паровой машины. Это дало начало научным исследованиям в области управления техническими объектами. Оказалось, что результаты и выводы данной теории могут быть применимы к управлению объектами различной природы с различными принципами действия. В настоящее время сфера ее влияния расширилась на анализ динамики таких систем, как экономические, социальные и т.п. Поэтому прежнее название “Теория автоматического регулирования” заменено на более широкое - “Теория автоматического управления”.
При k = 1 звено представляет собой “чистый” интегратор W(p) = 1/p. Интегрирующее звено неограниченно "накапливает" входное воздействие. Примеры интегрирующих звеньев: электродвигатель, поршневой гидравлический двигатель, емкость и т.п. Введение его в САУ превращает систему в астатическую, то есть ликвидирует статическую ошибку.
Уравнение динамики: , или Tpy + y = ku.
Передаточная функция: W(p) = .
Переходная характеристика может быть получена с помощью формулы Хевисайда:
где p1 = - 1/T - корень уравнения D(p) = Tp + 1 = 0; D’(p1) = T.
Переходная характеристика имеет вид экспоненты (рис.45), по которой можно определить передаточный коэффициент k, равный установившемуся значению h(t), и постоянную времени Т по времени t, соответствующему точке пересечения касательной к кривой в начале координат с ее асимптотой. При достаточно больших Т звено на начальном участке может рассматриваться как интегрирующее, при малых Т звено приближенно можно рассматривать как безынерционное. Примеры апериодического звена: термопара, электродвигатель, четырехполюсник из сопротивления и емкости или сопротивления и индуктивности.
Его уравнение: T12p2y + T2py + y = ku.
Передаточная функция: W(p) = .
Решение уравнения зависит от соотношения постоянных времени T1 и T2, которое определяет коэффициент затухания r = . Можно записать W(p) = , где T = T1.
Если r 1, то знаменатель W(p) имеет два вещественных корня p1 и p2 и раскладывается на два сомножителя:
T2p2 + 2rTp + 1 = T2
Такое звено можно разложить на два апериодических звена первого порядка, поэтому оно не является элементарным.
При r<1 корни полинома знаменателя W(p) комплексно сопряженные: p1,2 =
Различают идеальное и реальное дифференцирующие звенья. Уравнение динамики идеального звена: y(t) = , или y = kpu. Здесь выходная величина пропорциональна скорости изменения входной величины. Передаточная функция: W(p) = kp. При k = 1 звено осуществляет чистое дифференцирование W(p) = p. Переходная характеристика: h(t) = k 1’(t) = d(t).
Идеальное дифференцирующее звено реализовать невозможно, так как величина всплеска выходной величины при подаче на вход единичного ступенчатого воздействия всегда ограничена. На практике используют реальные дифференцирующие звенья, осуществляющие приближенное дифференцирование входного сигнала.
Его уравнение: Tpy + y = kTpu.
Передаточная функция: W(p) = .
При малых Т звено можно рассматривать как идеальное дифференцирующее. Переходную характеристики можно вывести с помощью формулы Хевисайда:
здесь p1 = - 1/T - корень характеристического уравнения D(p) = Tp + 1 = 0; кроме того, D’(p1) = T.
При подаче на вход единичного ступенчатого воздействия выходная величина оказывается ограничена по величине и растянута во времени (рис.47). По переходной характеристике, имеющей вид экспоненты, можно определить передаточный коэффициент k и постоянную времени Т. Примерами таких звеньев могут являться четырехполюсник из сопротивления и емкости или сопротивления и индуктивности, демпфер и т.п. Дифференцирующие звенья являются главным средством, применяемым для улучшения динамических свойств САУ.
Кроме рассмотренных имеется еще ряд звеньев, на которых подробно останавливаться не будем. К ним можно отнести идеальное форсирующее звено (W(p) = Tp + 1, практически не реализуемо), реальное форсирующее звено (W(p) = , при T1 >> T2), запаздывающее звено (W(p) = e - pT), воспроизводящее входное воздействие с запаздыванием по времени и другие.
6.1. Понятие частотных
Если подать на вход системы с передаточной функцией W(p) гармонический сигнал
то после завершения переходного процесса на выходе установится гармонические колебания
с той же частотой , но иными амплитудой и фазой, зависящими от частоты возмущающего воздействия. По ним можно судить о динамических свойствах системы. Зависимости, связывающие амплитуду и фазу выходного сигнала с частотой входного сигнала, называются частотными характеристиками (ЧХ). Анализ ЧХ системы с целью исследования ее динамических свойств называется частотным анализом.
Подставим выражения для u(t) и y(t) в уравнение динамики
(aоpn + a1pn - 1 + a2pn - 2 + ... + an)y = (bоpm + b1pm-1 + ... + bm)u.
Учтем, что
а значит
pnu = pnUmejwt = Um (jw)nejwt = (jw)nu.
Аналогичные соотношения можно записать и для левой части уравнения. Получим:
По аналогии с передаточной функцией можно записать:
.
W(j ), равная отношению выходного сигнала к входному при изменении входного сигнала по гармоническому закону, называется частотной передаточной функцией. Легко заметить, что она может быть получена путем простой замены p на j в выражении W(p).
W(j ) есть комплексная функция, поэтому:
где P( ) - вещественная ЧХ (ВЧХ); Q( ) - мнимая ЧХ (МЧХ); А( ) - амплитудная ЧХ (АЧХ): ( ) - фазовая ЧХ (ФЧХ). АЧХ дает отношение амплитуд выходного и входного сигналов, ФЧХ - сдвиг по фазе выходной величины относительно входной:
;
Если W(j
Ветвь АФЧХ при изменении от - до 0 можно получить зеркальным отображением данной кривой относительно вещественной оси.
В ТАУ широко используются логарифмические частотные характеристики (ЛЧХ) (рис.49): логарифмическая амплитудная ЧХ (ЛАЧХ) L( ) и логарифмическая фазовая ЧХ (ЛФЧХ) ( ). Они получаются путем логарифмирования передаточной функции:
ЛАЧХ получают из первого слагаемого, которое из соображений масштабирования умножается на 20, и используют не натуральный логарифм, а десятичный, то есть L( ) = 20lgA( ). Величина L( ) откладывается по оси ординат в децибелах. Изменение уровня сигнала на 10 дб соответствует изменению его мощности в 10 раз. Так как мощность гармонического сигнала Р пропорциональна квадрату его амплитуды А, то изменению сигнала в 10 раз соответствует изменение его уровня на 20дб,так как
lg(P2/P1) = lg(A22/A12) = 20lg(A2/A1).
По оси абсцисс откладывается частота w в логарифмическом масштабе. То есть единичным промежуткам по оси абсцисс соответствует изменение w в 10 раз. Такой интервал называется декадой. Так как lg(0) = - , то ось ординат проводят произвольно.
ЛФЧХ, получаемая из второго слагаемого, отличается от ФЧХ только масштабом по оси . Величина ( ) откладывается по оси ординат в градусах или радианах. Для элементарных звеньев она не выходит за пределы: - + .
ЧХ являются исчерпывающими характеристиками системы. Зная ЧХ системы можно восстановить ее передаточную функцию и определить параметры.
Зная передаточную функцию звена W(p) легко получить все его частотные характеристики. Для этого необходимо подставить в нее j вместо p, получим АФЧХ W(j ). Затем надо выразить из нее ВЧХ P( ) и МЧХ (Q( ). После этого преобразуют АФЧХ в показательную форму и получают АЧХ A( ) и ФЧХ ( ), а затем определяют выражение ЛАЧХ L(w) = 20lgA( ) (ЛФЧХ отличается от ФЧХ только масштабом оси абсцисс).
Передаточная функция:
W(p) = k.
АФЧХ: W(j ) = k.
ВЧХ: P( ) = k.
МЧХ: Q( ) = 0.
АЧХ: A( ) = k.
ФЧХ: ( ) = 0.
ЛАЧХ: L( ) = 20lgk.
Некоторые ЧХ показаны на рис.50. Звено пропускает все частоты одинаково c увеличением амплитуды в k раз и без сдвига по фазе.
Передаточная функция:
W(p) = k/p.
Рассмотрим частный случай, когда k = 1, то есть
W(p) = 1/p.
АФЧХ: W(j ) = .
ВЧХ: P( ) = 0.
МЧХ: Q( ) = - 1/ .
АЧХ: A( ) = 1/ .
ФЧХ: ( ) = - /2.
ЛАЧХ: L( ) = 20lg(1/ ) = - 20lg( ).
ЧХ показаны на рис.51. Все частоты звено пропускает с запаздыванием по фазе на 90о. Амплитуда выходного сигнала увеличивается при уменьшении частоты, и уменьшается до нуля при росте частоты (звено "заваливает" высокие частоты). ЛАЧХ представляет собой прямую, проходящую через точку L( ) = 0 при = 1. При увеличении частоты на декаду ордината уменьшается на 20lg10 = 20дб, то есть наклон ЛАЧХ равен - 20 дб/дек (децибел на декаду).
При k = 1 получаем следующие выражения ЧХ:
W(p) = ;
;
;
;
( ) = 1 - 2 = - arctg( T);
;
L( ) = 20lg(A( )) = - 10lg(1 + ( T)2).
Здесь A1 и A2 - амплитуды числителя и знаменателя ЛФЧХ; 1 и 2 - аргументы числителя и знаменателя. ЛФЧХ:
ЧХ показаны на рис.52. АФЧХ есть полуокружность радиусом 1/2 с центром в точке P = 1/2. При построении асимптотической ЛАЧХ считают, что при < 1 = 1/T можно пренебречь ( T)2 выражении для L( ), то есть L( ) - 10lg1 = 0.. При > 1 пренебрегают единицей в выражении в скобках, то есть L(w) - 20lg(wT). Поэтому ЛАЧХ проходит вдоль оси абсцисс до сопрягающей частоты, затем - под наклоном - 20 дб/дек. Частота w1 называется сопрягающей частотой. Максимальное отличие реальных ЛАЧХ от асимптотических не превышает 3 дб при = 1.
ЛФЧХ асимптотически стремится к нулю при уменьшении w до нуля (чем меньше частота, тем меньше искажения сигнала по фазе) и к - /2 при возрастании до бесконечности. Перегиб в точке = 1 при ( ) = - /4. ЛФЧХ всех апериодических звеньев имеют одинаковую форму и могут быть построены по типовой кривой с параллельным сдвигом вдоль оси частот.
При k = 1 передаточная функция звена: W(p) = .
В виду сложности вывода выражений для частотных характеристик рассмотрим их без доказательства, они показаны на рис.53.
Асимптотическая ЛАЧХ колебательного звена до сопрягающей частоты 1 = 1/T1 совпадает с осью абсцисс, при дальнейшем увеличении частоты идет с наклоном - 40 дб/дек. То есть высокие частоты колебательное звено "заваливает" сильнее, чем апериодическое звено.
Реальная ЛАЧХ при
ЛФЧХ при малых частотах асимтотически стремится к нулю. При увеличении частоты до бесконечности выходной сигнал поворачивается по фазе относительно входного на угол, стремящийся в пределе к - 180о. ЛФЧХ можно построить с помощью шаблона, но для этого нужен набор шаблонов для разных коэффициентов демпфирования. При уменьшении коэффициента демпфирования АФЧХ приближается к оси абсцисс и в пределе у консервативного звена она вырождается в два луча по оси абсцисс, при этом фаза выходных колебаний скачком меняется от нуля до - 180о при переходе через сопрягающую частоту (рис.54).
При построении ЧХ некоторых звеньев можно использовать “правило зеркала”: при k = 1 ЛАЧХ и ЛФЧХ звеньев с обратными передаточными функциями зеркальны относительно горизонтальной оси. Так на рис.55 изображены ЧХ идеального дифференцирующего и идеального форсирующего звеньев.
Если k 1, то передаточную функцию звена можно рассматривать как произведение W = k.W1, где W1 - передаточная функция с k = 1. При этом амплитуда вектора АФЧХ W(j ) при всех значениях должна бытьувеличена в k раз, то есть A( ) = kA1( ). Поэтому, например, центр полуокружности АФЧХ апериодического звена будет находиться не в точке P = 1/2, а в точке k/2. ЛАЧХ также изменится: L( ) = 20lgA( ) = 20lgkA1( ) = 20lgk + 20lgA1( ). Поэтому при k 1 ЛАЧХ звена нужно поднять по оси ординат не меняя ее формы на 20lgk. На ЛФЧХ изменение k никак не отразится.
Для примера на рис.56 приведены частотные характеристики апериодического звена при k = 10 и T = 1c. При этом ЛАЧХ апериодического звена с k = 1 поднята вверх на 20lg10 = 20.
При исследовании и проектировании САУ часто используют АФЧХ, ЛАЧХ и ЛФЧХ разомкнутых систем. Это объясняется тем, что разомкнутые САУ более просто исследовать экспериментально, чем замкнутые. В то же время по ним можно получить исчерпывающую информацию о поведении данной САУ в замкнутом состоянии.
Любую многоконтурную САУ можно привести к одноконтурной. Разомкнутая одноконтурная САУ состоит из цепочки последовательно соединенных динамических звеньев. Зная передаточную функцию разомкнутой САУ можно построить ее ЧХ. И наоборот, зная ЧХ разомкнутой САУ, снятую, например, опытным путем, можно найти ее передаточную функцию.
Передаточная функция разомкнутой одноконтурной системы равна произведению передаточных функций отдельных звеньев:
Заменив в этом выражении p на j w получим ее АФЧХ: