Автор работы: Пользователь скрыл имя, 15 Декабря 2014 в 00:08, курсовая работа
Целью математического моделирования экономических систем является использование методов математики для наиболее эффективного решения задач, возникающих в сфере экономики, с использование, как правило, современной вычислительной техники.
Целью данной курсовой работы является: Изучение экономических процессов с помощью необходимых для этого математических моделей.
Введение
Глава 1. Современное состояние вопроса моделирования систем
1.1 Моделирование, как метод научного познания
1.2 Особенности использования моделей
1.3 Классификация методов моделирования систем
Глава 2. Математическое моделирование экономических систем
2.1 Этапы создания математической модели для экономического процесса
2.2 Классификация экономико-математических моделей
2.3 Математические схемы моделирования систем
2.4 Основные подходы к построению математических моделей систем
2.5 Математические схемы
2.6 Формальная модель объекта
2.7 Типовые схемы
2.8 Основные логико-математическое характеристики для экономического процесса
Глава 3. Построение математических моделей для экономических процессов
3.1 Постановка задачи
3.2 Имитационные модели
3.3 Постановка задачи
3.4 Теоретический обзор методов решения задачи
3.5 Формализованная схема объекта моделирования
3.6 Имитационное моделирование процесса
Заключение
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
Содержание
Введение |
3 | |
Глава 1. Современное состояние вопроса моделирования систем |
4 | |
1.1 |
Моделирование, как метод научного познания |
4 |
1.2 |
Особенности использования моделей |
5 |
1.3 |
Классификация методов моделирования систем |
6 |
Глава 2. Математическое моделирование экономических систем |
8 | |
2.1 |
Этапы создания математической модели для экономического процесса |
9 |
2.2 |
Классификация экономико-математических моделей |
10 |
2.3 |
Математические схемы моделирования систем |
14 |
2.4 |
Основные подходы к построению математических моделей систем |
15 |
2.5 |
Математические схемы |
15 |
2.6 |
Формальная модель объекта |
16 |
2.7 |
Типовые схемы |
18 |
2.8 |
Основные логико-математическое характеристики для экономического процесса |
19 |
Глава 3. Построение математических моделей для экономических процессов |
21 | |
3.1 |
Постановка задачи |
21 |
3.2 |
Имитационные модели |
27 |
3.3 |
Постановка задачи |
27 |
3.4 |
Теоретический обзор методов решения задачи |
28 |
3.5 |
Формализованная схема объекта моделирования |
29 |
3.6 |
Имитационное моделирование процесса |
30 |
Заключение |
35 | |
СПИСОК ИСПОЛЛЬЗОВАНОЙ ЛИТЕРАТУРЫ |
36 |
Введение
Математическое моделирование как метод научного познания стало развиваться одновременно с зарождением основ высшей математики, связанным с работами Р. Декарта (1596-1650), И. Ньютона (1643-1727), Г. Лейбница (1646-1716). Первыми учеными, построившими математические модели реальных физических объектов, были П.Ферма (1601-1665), Б.Паскаль (1623-1662) и X.Гюйгенс (1629-1695). Развитие математического моделирования в экономике и производстве в XX веке в значительной мере обязано выдающимся ученым Л.В.Канторовичу, В.В.Леонтъеву, А.Н.Колмогорову, В.В.Новожилову, В.С.Немчинову, А.Л.Лурье и др.
Необходимость использования метода моделирования определяется тем, что многие объекты (или проблемы, относящиеся к этим объектам) непосредственно исследовать или вовсе невозможно, или же это исследование требует много времени и средств. Модель выступает как своеобразный инструмент познания, который исследователь ставит между собой и объектом и с помощью которого изучает интересующий его объект. Именно эта особенность метода моделирования определяет специфические формы использования абстракций, аналогий, гипотез, других категорий и методов познания.
Целью математического моделирования экономических систем является использование методов математики для наиболее эффективного решения задач, возникающих в сфере экономики, с использование, как правило, современной вычислительной техники.
Целью данной курсовой работы является: Изучение экономических процессов с помощью необходимых для этого математических моделей.
Глава 1. Современное состояние вопроса моделирования систем
Моделирование (в широком смысле) является основным методом исследований во всех областях знаний и научно обоснованным методом оценок характеристик сложных систем, используемых для принятия решений в различных сферах инженерной деятельности. Существующие и проектируемые системы можно эффективно исследовать с помощью математических моделей (аналитических и имитационных), реализуемых на современных ЭВМ, которые в этом случае выступают в качестве инструмента экспериментатора с моделью системы.
1.1 Моделирование, как метод научного познания
Моделирование в научных исследованиях стало применяться еще в глубокой древности и постепенно захватывало все новые области научных знаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, общественные науки. Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования ХХ в. Однако методология моделирования долгое время развивалась независимо отдельными науками. Отсутствовала единая система понятий, единая терминология. Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания.
Главная особенность моделирования в том, что это метод опосредованного познания с помощью объектов-заместителей. Модель выступает как своеобразный инструмент познания, который исследователь ставит между собой и объектом и с помощью которого изучает интересующий его объект. Именно эта особенность метода моделирования определяет специфические формы использования абстракций, аналогий, гипотез, других категорий и методов познания.
Необходимость использования метода моделирования определяется тем, что многие объекты (или проблемы, относящиеся к этим объектам) непосредственно исследовать или вовсе невозможно, или же это исследование требует много времени и средств.
Процесс моделирования включает три элемента:
Для понимания сущности моделирования важно не упускать из виду, что моделирование - не единственный источник знаний об объекте. Процесс моделирования "погружен" в более общий процесс познания. Это обстоятельство учитывается не только на этапе построения модели, но и на завершающей стадии, когда происходит объединение и обобщение результатов исследования, получаемых на основе многообразных средств познания.
Моделирование циклический процесс. Это означает, что за первым четырехэтапным циклом может последовать второй, третий и т.д. При этом знания об исследуемом объекте расширяются и уточняются, а исходная модель постепенно совершенствуется. Недостатки, обнаруженные после первого цикла моделирования, обусловленные малым знанием объекта и ошибками в построении модели, можно исправить в последующих циклах. В методологии моделирования, таким образом, заложены большие возможности саморазвития.
1.2 Особенности использования моделей
Выбор метода моделирования и необходимая детализация моделей существенно зависят от этапа разработки сложной системы. На этапах обследования объекта управления, например промышленного предприятия, и разработки технического задания на проектирование автоматизированной системы управления модели в основном носят описательный характер и преследуют цель наиболее полно представить в компактной форме информацию об объекте, необходимую разработчику системы. На этапах разработки технического и рабочего проектов систем, модели отдельных подсистем детализируются, и моделирование служит для решения конкретных задач проектирования, т. е. выбора оптимального по определенному критерию при заданных ограничениях варианта из множества допустимых. Поэтому в основном на этих этапах проектирования сложных систем используются модели для целей синтеза. Целевое назначение моделирования на этапе внедрения и эксплуатации сложных систем — это проигрывание возможных ситуаций для принятия обоснованных и перспективных решений по управлению объектом. Моделирование (имитацию) также широко применяют при обучении и тренировке персонала автоматизированных систем управления, вычислительных комплексов и сетей, информационных систем в различных сферах. В этом случае моделирование носит характер деловых игр. Модель, реализуемая обычно на ЭВМ, воспроизводит поведение управляемого объекта и внешней среды, а люди в определенные моменты времени принимают решения по управлению объектом. АСОИУ являются системами, которые развиваются по мере эволюции объекта управления, появления новых средств управления и т. д. Поэтому при прогнозировании развития сложных систем роль моделирования очень высока, так как это единственная возможность ответить на многочисленные вопросы о путях дальнейшего эффективного развития системы и выбора из них наиболее оптимального.
1.3. Классификация методов моделирования систем
В основе моделирования лежит теория подобия, которая утверждает, что абсолютное подобие может иметь место лишь при замене одного объекта другим точно таким же. При моделировании абсолютное подобие не имеет места и стремятся к тому, чтобы модель достаточно хорошо отображала исследуемую сторону функционирования объекта. Классификационные признаки. В качестве одного из первых признаков классификации видов моделирования можно выбрать степень полноты модели и разделить модели в соответствии с этим признаком на полные, неполные и приближенные. В основе полного моделирования лежит полное подобие, которое проявляется как во времени, так и в пространстве. Для неполного моделирования характерно неполное подобие модели изучаемому объекту. В основе приближенного моделирования лежит приближенное подобие, при котором некоторые стороны функционирования реального объекта не моделируются совсем.
Все виды моделирования могут быть разделены на детерминированные и стохастические, статические и динамические, дискретные, непрерывные и дискретно-непрерывные.
Глава 2. Математическое моделирование экономических систем.
Термин экономико-математические методы понимается в свою очередь как обобщающее название комплекса экономических и математических научных дисциплин, объединенных для изучения социально-экономических систем и процессов. Под социально-экономической системой будем понимать сложную вероятностную динамическую систему, охватывающую процессы производства, обмена, распределения и потребления материальных и других благ. Она относится к классу кибернетических систем, т. е. систем управляемых.
Рассмотрим понятия, связанные с такими системами и методами их исследования. Центральным понятием кибернетики является понятие «система». Единого определения этого понятия нет; возможна такая формулировка: системой называется комплекс взаимосвязанных элементов вместе с отношениями между элементами и между их атрибутами. Исследуемое множество элементов можно рассматривать как систему, если выявлены следующие четыре признака:
• целостность системы, т. е. комплекс объектов, рассматриваемых в качестве системы, представляет собой определенную целостность, обладающий общими свойствами и поведением, • наличие цели и критерия исследования данного множества элементов,
• наличие более крупной, внешней по отношению к данной, системы, называемой « средой »;
• возможность выделения в данной системе взаимосвязанных частей (подсистем).
Основным методом исследования систем является метод моделирования, т. е. способ теоретического анализа и практического действия, направленный на разработку и использование моделей. При этом под моделью будем понимать образ реального объекта (процесса) в материальной или идеальной форме (т. е. описанный знаковыми средствами на каком-либо языке), отражающий существенные свойства моделируемого объекта (процесса) и замещающий его входе исследования и управления. Метод моделирования основывается на принципе аналогии, т. е. возможности изучения реального объекта не непосредственно, а через рассмотрение подобного ему и более доступного объекта, его модели. В дальнейшем мы будем говорить только об экономико-математическом моделировании, т. е. об описании знаковыми математическими средствами социально-экономических систем.
2.1. Этапы создания математической модели для экономического процесса
Для построения математической модели необходимо исследовать экономический процесс исследование которго состоит из следующих этапов:
1) идентификации проблемы;
2) построения модели;
3) решения поставленной задачи с помощью модели;
4) проверки адекватности модели;
5)
реализации результатов
Информация о работе Математическое моделирование экономических систем