Автор работы: Пользователь скрыл имя, 07 Сентября 2014 в 19:02, курсовая работа
Поведение фирмы в условиях олигополии рассматривается в контексте изучения вопросов рыночного регулирования экономики, так как олигополии образовались в рыночной среде. Формирование олигополий произошло давно, существуют они достаточно успешно, и, по-видимому, будут существовать всегда. В этом определяется неизбежность присутствия олигополий в рыночной экономике.
Цель курсовой работы - изучить особенности структуры олигополистического рынка, исследовать принципы оптимизации поведения фирмы в условиях олигополии.
Фирма 2 может рассуждать таким же образом, поэтому выбор фирмы 2 в следующем периоде будет задаваться уравнением:
Эти уравнения описывают, каким образом каждая фирма изменяет свой объем выпуска перед лицом выбора другой фирмы. Рис.4.4 иллюстрирует перемещение точек выпуска двух фирм, подразумеваемое таким поведением. Поясним данный график. Начнем с какой-то точки выпуска ( ). При заданном объеме выпуска фирмы 2 фирма 1 в оптимуме предпочтет в следующем периоде произвести . Мы находим эту точку на графике, перемещаясь по горизонтали влево, пока не дойдем до кривой реакции фирмы 1.
Если фирма 2 ожидает, что фирма 1 будет продолжать производить , то ее оптимальным ответом будет решение производить . Находим эту точку, перемещаясь вертикально вверх, пока не дойдем до кривой реакции фирмы 2. Продолжая двигаться вдоль "лестницы", определяем тем самым ряд последовательных точек выбора объемов выпуска двух фирм. В проиллюстрированном нами примере этот процесс приспособления сходится в точке равновесия по Курно. Мы говорим, что в этом случае равновесие по Курно является устойчивым равновесием.
Невзирая на то, что на интуитивном уровне данный процесс установления равновесия кажется привлекательным, с ним на самом деле связаны некоторые затруднения. Каждая из фирм предполагает, что выпуск другой фирмы при переходе от одного периода к другому остается постоянным, но, как оказывается, обе фирмы все время изменяют свой выпуск. Лишь в равновесии ожидания одной фирмы в отношении выбора объема выпуска другой фирмой действительно сбываются. По этой причине мы, как правило, будем игнорировать вопрос о том, как устанавливается равновесие, концентрируя внимание лишь на том, как ведут себя фирмы в условиях равновесия.
Равновесие по Курно для случая многих фирм.
Допустим теперь, что в равновесии по Курно находятся не две, а несколько фирм. Предположим, что каждая фирма имеет определенные ожидания в отношении выбора объемов выпуска другими фирмами отрасли, и попытаемся описать равновесный выпуск.
Допустим, что в отрасли существует n фирм, и обозначим общий выпуск отрасли через . Тогда условие "предельный доход равняется предельным издержкам" для i-й фирмы есть
Вынеся за скобку p(Y) и умножив второй член на Y/Y, можем записать это уравнение как
p(Y)
Применив определение эластичности кривой совокупного спроса и обозначив долю общего рыночного выпуска i-й фирмы через si = yi/Y, можно свести это уравнение к виду
p(Y)
Можно также записать данное выражение как
p(Y)
Оно выглядит точно так же, как и выражение для монополиста, за исключением члена si. Мы можем считать e(Y)/ si эластичностью кривой спроса для фирмы: чем меньше рыночная доля фирмы, тем более эластичной является кривая спроса для нее.
Если рыночная доля равна 1, т.е. фирма является монополистом, то кривая спроса для фирмы есть кривая рыночного спроса, так что данное условие просто сводится к условию для монополиста. Если фирма представляет собой очень малую часть большого рынка, ее рыночная доля по существу равна нулю, и кривая спроса для фирмы по сути дела горизонтальна. Следовательно, данное условие сводится к условию для чисто конкурентной фирмы: цена равна предельным издержкам.
2.4. Одновременное установление цен (модель Бертрану)
Согласно предпосылке описанной выше модели Курно фирмы выбирают объемы выпуска, оставляя определение цены за рынком. Согласно другому подходу фирмы устанавливают цены на свой выпуск, оставляя за рынком определение объемов продаж. Эта модель известна как конкуренция по Бертрану.
Выбирая цену, фирма должна предвидеть цену, устанавливаемую другой фирмой отрасли. Так же, как в случае равновесия по Курно, мы хотим найти пару цен такую, что каждая из них является выбором, максимизирующим прибыль при заданном выборе цены другой фирмой.
Как выглядит равновесие по Бертрану? В ситуации когда фирмы продают, как мы предположили, одинаковые продукты, структура равновесия по Бертрану на самом деле очень проста. Это равновесие оказывается конкурентным равновесием в точке, где цена равна предельным издержкам!
Сначала обратим внимание на то, что цена никогда не может быть меньше предельных издержек, поскольку иначе каждая из фирм увеличила бы свою прибыль, начав производить меньше. Поэтому рассмотрим случай, когда цена больше предельных издержек. Предположим, что обе фирмы продают выпуск по некоторой цене , которая выше предельных издержек. Рассмотрим позицию фирмы 1. Если она снизит свою цену на любую малую величину e и если другая фирма сохранит свою цену на уровне , то все потребители захотят покупать продукт у фирмы 1. Снизив цену на произвольно малую величину, эта фирма сможет увести у фирмы 2 всех покупателей.
Если фирма 1 действительно думает, что фирма 2 назначит цену , большую, чем предельные издержки, ей всегда будет выгодно снизить цену до — e. Но фирма 2 может рассуждать точно так же! Следовательно, в равновесии не может существовать никакая цена, которая была бы выше предельных издержек; единственно возможное равновесие — конкурентное.
Этот результат кажется парадоксальным, когда вы с ним сталкиваетесь впервые: как можно получить конкурентную цену, если на рынке имеется только две фирмы? Если, однако представить себе модель Бертрана как модель конкурентных торгов, результат этот приобретет больший смысл. Допустим, что одна из фирм участвует в торгах, назначая цену выше предельных издержек. Тогда другая фирма всегда может получить прибыль, сбивая эту цену. Отсюда следует, что единственная цена, "сбивания" которой не может ожидать ни одна из фирм, есть цена, равная предельным издержкам.
Часто можно наблюдать, что в результате конкурентных торгов с участием фирм, не готовых к сговору, устанавливаются цены, много ниже тех, к которым можно было бы придти каким-то другим способом. Это явление есть не что иное как пример логики конкуренции по Бертрану.
2.5. Сговор
В рассмотренных нами до сих пор моделях фирмы действовали независимо друг от друга. Однако в случае вступления фирм в сговор с целью совместного определения выпуска эти модели выглядят не очень разумными. Если сговор возможен, то фирмам выгоднее выбрать объем выпуска, максимизирующий общую прибыль отрасли, и затем разделить прибыль между собой. Объединение фирм в целях установления таких цен и объема выпуска, которые максимизировали бы общую прибыль отрасли, известно как картель.
Картель — это группа фирм, вступающих в сговор, чтобы вести себя как единый монополист и максимизировать сумму своих прибылей.
Таким образом, задача максимизации прибыли для двух фирм состоит в выборе таких объемов выпуска y1 и y2, которые бы максимизировали общую прибыль отрасли:
max p(y1 + y2) [y1 + y2] — c1(y1) — c2(y2).
y1, y2
Условия оптимальности для данной задачи имеют вид:
p(
p(
Истолкование этих двух условий представляет интерес. Обдумывая, не увеличить ли ей выпуск на Dy1, фирма 1 ожидает двух обычных эффектов: получения добавочной прибыли от продажи большего объема выпуска и сокращения прибыли вследствие снижения цены. Однако рассматривая второй эффект, она теперь учитывает эффект снижения цены как на свой выпуск, так и на выпуск другой фирмы. Это связано с тем, что теперь она заинтересована в максимизации не только своей прибыли, но и общей прибыли отрасли.
Условия оптимальности означают, что предельный доход от добавочной единицы выпуска должен быть одинаковым независимо от того, где он произведен. Отсюда следует, что MC1( ) = MC2( ), так что предельные издержки обеих фирм в равновесии должны быть равны. Если одна из фирм имеет преимущества в издержках, так что ее кривая предельных издержек всегда лежит под кривой предельных издержек другой фирмы, то в равновесии при картеле она всегда будет производить больше выпуска.
В реальной жизни проблема с решением вступить в картель состоит в том, что всегда есть искушение нарушить условия соглашения. Предположим, например, что две фирмы производят объемы выпуска( , ), максимизирующие прибыль отрасли, и что фирма 1 обдумывает, не произвести ли ей чуть больше выпуска Dy1. Предельная прибыль, которую при этом получит фирма 1, составит
= p( + ) + —MC1( ). (4)
Как мы видели раньше, условие оптимальности для картельного решения есть
p(
Преобразование данного уравнения дает
p( + ) + —MC1( ) = — > 0. (5)
Это последнее неравенство возникает потому, что величина Dp/DY отрицательна, так как кривая рыночного спроса имеет отрицательный наклон.
Внимательно рассмотрев уравнения (4) и (5), мы видим, что
Следовательно, если фирма 1 полагает, что фирма 2 не изменит свой выпуск, то она будет считать, что может увеличить свою прибыль, увеличив свое собственное производство. При картельном решении фирмы осуществляют совместные действия по ограничению выпуска, чтобы не "испортить" рынок. Они осознают влияние расширения выпуска какой-либо из фирм на общую прибыль картеля. Однако если каждая фирма думает, что другая будет придерживаться своей квоты выпуска, то у каждой из фирм возникнет искушение увеличить свою собственную прибыль путем одностороннего расширения выпуска. При объемах выпуска, максимизирующих общую прибыль картеля, каждой из фирм всегда будет выгодно односторонне увеличить свой выпуск — если она ожидает, что другая фирма будет придерживаться неизменного выпуска.
Дело обстоит еще хуже. Если фирма 1 думает, что фирма 2 не изменит своего объема выпуска, то она сочтет выгодным увеличить свой собственный выпуск. Но если она думает, что фирма 2 увеличит свой выпуск, то она захочет увеличить свой выпуск первой, чтобы получить прибыль, пока это возможно!
Таким образом, чтобы поддержать действующий картель, фирмы нуждаются в способе отслеживания и наказания обмана. Если у них нет возможности следить за выпуском друг друга, то искушение обмануть может привести к распаду картеля. Мы вернемся к этому вопросу чуть позднее.
Чтобы убедиться в том, что мы понимаем, как найти решение задачи максимизации прибыли картеля, рассчитаем его для случая нулевых предельных издержек и линейной кривой спроса, которые мы использовали в случае модели Курно.
Функция совокупной прибыли картеля будет иметь вид
p(y1, y2) = [a — b(y1 + y2)] (y1 + y2) = a(y1 + y2) — b(y1 + y2)2,
так что условие равенства предельного дохода предельным издержкам будет выражено как
a — 2b(
а это означает, что
Поскольку предельные издержки равны нулю, то, как именно разделен выпуск между двумя фирмами, значения не имеет. Единственное, что подлежит определению, это общий объем выпуска отрасли.
Это решение показано на рис.7. Здесь мы изобразили изопрофитные кривые для каждой из фирм и выделили геометрическое место точек их касаний друг с другом. Почему данная линия представляет интерес? Поскольку картель пытается максимизировать общую прибыль отрасли, отсюда следует, что предельная прибыль от производства чуть большего объема выпуска любой из фирм должна быть одинаковой, иначе было бы выгодно, чтобы более прибыльная фирма производила больший объем выпуска. Это в свою очередь означает, что наклоны изопрофитных кривых должны быть одинаковы для каждой фирмы; иными словами, изопрофитные кривые должны касаться друг друга. Следовательно, комбинации выпуска, максимизирующие общую прибыль отрасли, т.е. являющиеся решением задачи для картеля, должны лежать на линии, изображенной на рис.7.
Картель. Если прибыль отрасли максимизируется, то предельная прибыль от производства большего объема выпуска для
любой фирмы должна быть должны касаться друг друга в точках объемов выпуска, максимизирующих прибыль. |
Рис.7 иллюстрирует также искушение обмануть, присутствующее в каждом решении задачи максимизации прибыли картеля. Рассмотрим, например, точку, в которой две фирмы делят рынок поровну. Представим, что произошло бы, если бы фирма 1 думала, что фирма 2 будет поддерживать свой выпуск постоянным. Если бы фирма 1 увеличила свой выпуск, а фирма 2 сохраняла постоянный выпуск, то фирма 1 передвинулась бы на более низкую изопрофитную кривую, а это означает, что прибыль фирмы 1 увеличилась бы. Именно это и говорят нам приведенные выше алгебраические выкладки. Если одна фирма думает, что выпуск другой будет оставаться постоянным, то у нее возникнет искушение увеличить свой собственный выпуск, чтобы получить большую прибыль.
2.6. Сравнение решений
До настоящего момента мы рассмотрели несколько моделей поведения дуополии: лидерство по объему выпуска (модель Стэкельберга), лидерство в ценообразовании, одновременное установление объемов выпуска (модель Курно), одновременное установление цен (модель Бертрана) и решение в случае сговора. Что показывает их сравнение? Вообще говоря, сговор имеет своим результатом наименьший отраслевой объем выпуска и наивысшую цену. Равновесие по Бертрану — конкурентное равновесие — дает наивысший выпуск и самую низкую цену. Результаты других моделей находятся между этими двумя крайностями. Возможно построение множества других моделей. Например, можно рассмотреть модель с дифференциацией продуктов, в которой два производимых товара не являются совершенными субститутами. Или же модель, в которой фирмы принимают ряд решений о выборе с течением времени. В рамках такой модели выбор, сделанный фирмой в какой-то момент времени, может влиять на выбор, который делает позднее другая фирма.
Информация о работе Принципы оптимизации поведения фирмы в условиях олигополии