Автор работы: Пользователь скрыл имя, 21 Мая 2013 в 13:21, дипломная работа
В соответствии с нормативными документами по нахождения ПДВ [1,4] в этом случае обратная задача решается путем подбора реальных (технологически применимых) для данного производства атмосфероохранных мероприятий (АОМ), таких как замена оборудования, установка газоочистки и т.д. Фактически, обратная задача решается при этом методом подбора. Однако при большом числе источников большую помощь в выборе первоочередных мероприятий дает решение задачи форматизированными методами. Пользуясь линейностью модели ОНД-86 по выбросам источников можно представить загрязнение атмосферы в контрольных точках жилой зоны в виде линейной формы:
,
где - концентрация в i-ой точке, - выброс j-го источника, - вклад j-го источника в i-й точке, который в дальнейшем будем называть коэффициентом влияния.
ВВЕДЕНИЕ
1. Существующая система установления ПДВ для промышленных источников
1.1 Нормативы и показатели загрязнения атмосферы.
1.2 Данные об источниках загрязнения атмосферы.
1.3 Метеопараметры
1.4 Данные наблюдений за загрязнением атмосферы
1.5 Модели расчета загрязнения атмосферы
1.6 Унифицированные программы расчета загрязнения атмосферы
1.7 МетодЫ равного квотирования и МРН-87
2. Симплекс-метод
2.1 Общая характеристика симплекс метода
2.2 Алгоритм симплекс метода (первая симплекс таблица)
3. Формализация поставленной задачи
4. Программная реализация и пример практического применения
4.1 Выбор загрязняющих веществ
4.2 Обработка точек с повышенным загрязнением
4.3 Обработка источников
4.4 Обработка таблиц влияния источников на точки
4.5 Применении симплекс-метода
4.6 Вывод полученных результатов
4.7 Сравнение различных методов расчета ПДВ для реального предприятия
Заключение
Список литературы
Нормативная информация о параметрах ИЗА представляется предприятиями в природоохранные органы на основе проведения инвентаризации. В Федеральный Закон "Об охране атмосферного воздуха" [5] впервые (в сравнении с ранее действовавшим Законом) введена статья, касающаяся инвентаризации выбросов ЗВ в атмосферный воздух. В соответствии со статьей 22 Закона “юридические лица, имеющие источники выбросов ЗВ в атмосферный воздух, проводят инвентаризацию выбросов вредных (загрязняющих) веществ в атмосферный воздух и их источников в порядке, определенном специально уполномоченным федеральным органом исполнительной власти в области охраны атмосферного воздуха» (в настоящее время - Ростехнадзор РФ). Инвентаризацию проводят все действующие предприятия, организации, учреждения независимо от их организационно-правовых форм и форм собственности, производственная деятельность которых связана с выбросом ЗВ в атмосферу. Ответственность за полноту и достоверность данных инвентаризации несет предприятие (в лице руководителя). Инвентаризация выбросов (т.е. представление информации с точностью до каждого ИЗА) проводится 1 раз в 5 лет [1, 15]. Кроме того, ежегодно предприятия отчитываются по форме государственного статистического наблюдения № 2-тп (воздух), которая содержит сведения только о годовых выбросах предприятия в сумме по всем источникам.
Определение параметров источников загрязнения атмосферы (ИЗА) для проекта нормативов ПДВ должно осуществляться при регламентных загрузке и условиях эксплуатации технологического и пыле-, газоочистного оборудования. В соответствие с новыми требованиями [1], параметры ИЗА следует фиксировать и на основных режимах работы технологического оборудования (установки) и различных стадиях технологических процессов. Однако в настоящее время для подавляющего большинства предприятий такая информация отсутствует, и данные о выбросах представлены только для максимальной регламентной нагрузки установок (максимальные разовые выбросы, г/сек) и в целом за год (годовые или валовые выбросы, т/год).
Для определения количественных и качественных характеристик выделений и выбросов загрязняющих веществ (3В) в атмосферу используются инструментальные и расчетные (балансовые, а также основанные на удельных технологических нормативах или закономерностях протекания физико-химических процессов) методы [1]. К расчетным методам, как правило, относятся расчетно-аналитические методы, в которых в качестве параметров расчетных формул для определения величин выброса (г/с) используются значения многократно измеренных концентраций вредных веществ (мг/м3) в атмосферном воздухе для типовых источников выделения. Выбор методов определения количественных и качественных характеристик выделений и выбросов 3В в атмосферу зависит, в первую очередь, oт характера производства и типа источника.
Инструментальные методы являются превалирующими для ИЗА с организованным выбросов ЗВ в атмосферу (организованные источники), к которым, в основном, относятся:
Расчетные методы применяются, в основном, для определения характеристик источников с неорганизованными выделениями (выбросами). К ним относятся:
При этом, как подчеркивается в [1], могут использоваться только методики, рекомендованные к применению в установленном порядке перечнем [13] или документами, дополняющими и корректирующими этот перечень.
В настоящее время данные инвентаризации содержат сведения о типе источника, координатах (x1,y1), (x2,y2) [м] его расположения на плоской карте (схеме) местности, высоте выброса H [м], геометрии выходного канала D [м]. Кроме того, указывается выбрасываемый в единицу времени объем Vg [м3/сек] (или вертикальная скорость Wo[м/сек]) газовоздушной смеси, ее температура Tg [оС], показатели разового выброса Qi [г/сек] и суммарного за год (валового) выброса Qгi [т/год], i=1,…,I, где I - число выбрасываемых в атмосферу ЗВ.
Источники по типу подразделяются на точечные, линейные и площадные. Для точечного источника (x2,y2)=0. Линейные представляются прямолинейными отрезками конечной длины, при этом (x1,y1), (x2,y2) есть координаты концов отрезка. Площадные описываются прямоугольником с центром в точке (x1,y1) и длиной сторон (x2,y2). Для площадного ИЗА указывается острый угол, отсчитываемый против часовой стрелки от оси x до x2. В качестве показателей выбросов Qi и Qгi для линейных и площадных источников указываются суммарные значения, что предполагает равномерное выделение с единицы длины или площади. Источники произвольной формы приближаются набором отрезков или прямоугольников. Аналогично приближаются источники с неравномерным выбросом по протяженности или площади.
По величине погрешности данные об источниках можно разделить на две группы. Первая - характеристики источника как сооружения (высота H, диаметр D) и координаты его расположения на территории. Измерение таких данных осуществляется достаточно просто, в зависимости от потребностей задачи они могут быть легко уточнены и изменяются только при коренной перестройки промышленного предприятия. Поэтому при постановке задач можно предполагать, что перечисленные параметры ИЗА, взятые по результатам инвентаризации, заданы с малой погрешностью даже для локальных задач переноса аэрозолей. Вторая группа – характеристики условий и количества выхода ЗВ из источника: Tg, Vg (Wo), Q. Температура выброса является весьма устойчивой величиной для однотипных промышленных установок и погрешность ее задания на превосходит 2-3% для энергетических установок и 10-15% для остальных промышленных ИЗА. Большей изменчивостью обладает объем Vg (или скорость Wo газо-воздушной смеси), которые по имеющимся оценкам может изменяться для некоторых ИЗА в 2 раза. Такой важный параметр источника как выбрасываемое количество ЗВ в единицу времени Q также обладает значительной изменчивостью, и точность его получения весьма невысока. Реальные данные по конкретным предприятиям в большинстве случаев получают на основе расчетных методов, поэтому теоретически их погрешность неизвестна. На практике же специалисты оценивают ее величиной 50-100% для конкретных источников и 20% для предприятий в целом [20].
Из приведенного краткого рассмотрения следует, что нормативная информация о выбросах промышленных предприятий, представленная в инвентаризации, пригодна для моделирования максимального (причем без указания его наступления во времени) или среднего за достаточно длительный (сезон, год) период загрязнения атмосферы промышленными аэрозолями. Поскольку зависимость мощности разового выброса Q от времени не может быть в масштабе города (региона) напрямую получена по данным инвентаризации, моделирование временного хода загрязнения с учетом зависимости выбросов от времени может быть осуществлено лишь весьма приближенно, на основе косвенных данных по суточной или сезонной производительности промышленных объектов. Исключения составляют случаи специальных экспериментов, во время которых ИЗА оборудуются измерительной аппаратурой для контроля выбросов. А поскольку количество источников по многим ЗВ в промышленном городе измеряется сотнями, то очевидно, что такие эксперименты реальны только для уникальных ЗВ, допускающих надежные методы оперативного инструментального контроля и выбрасывающихся в атмосферу города незначительным числом ИЗА.
Можно также обоснованно полагать, что значения выбросов, полученные по данным инвентаризации в масштабе города (региона), если и содержат ошибку, то систематическую. Это связано с тем, что все выбросы получены на основе единообразных методов расчета, а случайные ошибки с определенной надежностью фильтруются контролирующими органами на этапе приемки и согласования инвентаризации. Тем не менее, даже при наличии систематической ошибки данные инвентаризации остаются пригодными для сравнительного анализа воздействия различных объектов на загрязнение атмосферы.
Что касается постановки и решения обратных задач по управлению выбросами в атмосферу, то тут следует учитывать как высокую чувствительность решения таких задач к погрешностям исходных данных, так и ограниченные возможности ИЗА реальных предприятий по оперативному изменению выбросов. Большинство промышленных установок не допускают отклонений от регламентного режима. Остановка многих из них либо вообще невозможна, либо сопровождается увеличением выбросов в атмосферу. Поэтому практическая ценность математических моделей (например - оптимизационных) оперативного управления разовыми выбросами весьма ограничена. А реальную пользу по планированию первоочередных АОМ могут принести модели оптимального планирования долгосрочных АОМ, где в качестве управляемых параметров являются суммарные годовые и максимальные за год разовые выбросы ИЗА.
Состояние локального загрязнения приземного слоя воздуха существенно зависит от метеорологических условий. Хорошо известно, что при одних и тех же параметрах выбросов ИЗА, в зависимости от метеоусловий, концентрация у земли может меняться на порядок и более.
С точки зрения распространения ЗВ в атмосфере метеоусловия подразделяются на нормальные и аномальные [10]. Нормальные характеризуются, прежде всего, наличием ярко выраженного среднего направления ветра. Таковыми в крупных городах являются условия со скоростью ветра более 1-2 м/сек. При меньших скоростях (штиль или близкое к штилевому состояние) в результате рельефных особенностей и температурной неоднородности подстилающей поверхности могут образовываться локальные циркуляционные зоны, приводящие к накоплению ЗВ в слое дыхания [17,18]. Ситуация становится особенно опасной при наличии вертикальной температурной инверсии, препятствующей уносу примеси в верхние слои атмосферы. Именно при таких метеоусловиях фиксируются максимальные уровни загрязнения при инструментальных наблюдениях.
Подразделение метеоусловий на нормальные и аномальные играет важную роль для осознания результатов инженерных расчетов загрязнения атмосферы. Дело в том, что все инженерные модели применимы только при нормальных метеоусловиях, поскольку единое направление ветра и его стационарность являются их непременным условием. Поэтому расчетная "максимальная" концентрация является не абсолютным максимумом загрязнения, а наибольшей из концентраций для нормальных условий. Даже если предположить, что методика расчета и параметры выбросов полностью соответствуют происходящему в природе, то превышение расчетного максимума все является равновозможным и зависит от частоты появления аномальных неблагоприятных метеоусловий.
В рамках любой локальной стационарной модели наиболее важными с точки зрения рассеяния примесей метеорологическими параметрами являются скорость и направление ветра, а также показатели диффузионной активности (устойчивости) атмосферы. Скорость и направление ветра измеряются непосредственно. Обзор методов измерений скорости ветра показывает, что относительная погрешность составляет от 15% (при скоростях порядка 5 м/с) до 55% (при скорости порядка 1м/с) [26]. С точки зрения решения задач переноса аэрозолей локального масштаба представляет интерес, что погрешности при определении направления ветра могут привести к ошибке положения оси дымового факела на карте территории порядка 10-15%, в результате чего при достаточно устойчивой стратификации атмосферы факел просто не накроет расчетную точку и приведет к большой ошибке моделирования. Это следует учитывать при интерпретации понятия "опасное направление ветра" и определении основных виновников загрязнения заданной точки города. Сказанное еще раз подчеркивает, что на практике при решении краткосрочных задач нормирования выбросов в смысле неравенства (1) представляет интерес предсказание с разумной точностью максимума разовой концентрации даже без указания момента времени, когда это произойдет.
При обосновании системы мониторинга на территории России академик Ю.А. Израэль подчеркивает, что "только регулярные наблюдения в строго определенных местах и в строго установленные сроки являются источниками прямой и статистически обеспеченной информации о загрязнении окружающей среды"[23]. Такого рода наблюдения применительно к загрязнению атмосферы осуществляются на сети стационарных постов Росгидромета в городах . Посты расположены только в крупных городах. Например, в Кемеровской области стационарные посты оборудованы в Новокузнецке (10), Кемерово (9) и Белово (1). Причем количество постов сокращается (в 90-х годах в Кемерово было 12 постов). На постах ежедневно (в 7, 13 и 19 часов местного времени) осуществляются отборы проб воздуха, которые доставляются в лабораторию местного подразделения Росгидромета, где анализируются стандартизированными методами. Контролируются только незначительное число наиболее распространенных ЗВ (10-20 примесей), в то время как в данных инвентаризации совокупности предприятий крупного промышленного города встречается на практике 100-200 веществ. Таким образом, большинство ЗВ на сети не контролируется ничем, кроме интуиции разработчиков проектов и согласующих эти проекты экспертов.
Обзор методов инструментального анализа воздуха [21,22] показывает, что количественные оценки погрешностей различных этапов лабораторных методов анализа полученных проб составляют 6-25% (с доверительной вероятностью 95%).