Автор работы: Пользователь скрыл имя, 15 Июня 2013 в 14:42, реферат
Чтобы добыть руду, выплавить из нее металл, построить дом, сделать любую вещь, нужно израсходовать энергию. А потребности человека все время растут, да и людей становится все больше. Так за чем же остановка? Ученые и изобретатели уже давно разработали многочисленные способы производства энергии, в первую очередь электрической. Давайте тогда строить все больше и больше электростанций, и энергии будет столько, сколько понадобится! Такое, казалось бы, очевидное решение сложной задачи, оказывается, таит в себе немало подводных камней. Неумолимые законы природы утверждают, что получить энергию, пригодную для использования, можно только за счет ее преобразований из других форм.
Карусельные ветродвигатели. Различие в аэродинамике дает карусельным установкам преимущество в сравнении с традиционными ветряками. При увеличении скорости ветра они быстро наращивают силу тяги, после чего скорость вращения стабилизируется. Карусельные ветродвигатели тихоходны и это позволяет использовать простые электрические схемы, например, с асинхронным генератором, без риска потерпеть аварию при случайном порыве ветра. Тихоходность выдвигает одно ограничивающее требование – использование многополюсного генератора работающего на малых оборотах. Такие генераторы не имеют широкого распространения, а использование мультипликаторов (Мультипликатор [лат. multiplicator умножающий] – повышающий редуктор) неэффективно из-за низкого КПД последних.
Еще более важным преимуществом карусельной конструкции стала ее способность без дополнительных ухищрений следить за тем “откуда дует ветер”, что весьма существенно для приземных рыскающих потоков. Ветродвигатели подобного типа строятся в США, Японии, Англии, ФРГ, Канаде.
Карусельный лопастный ветродвигатель наиболее прост в эксплуатации. Его конструкция обеспечивает максимальный момент при запуске ветродвигателя и автоматическое саморегулирование максимальной скорости вращения в процессе работы. С увеличением нагрузки уменьшается скорость вращения и возрастает вращающий момент вплоть до полной остановки.
Ортогональные ветродвигатели. Ортогональные ветроагрегаты, как полагают специалисты, перспективны для большой энергетики. Сегодня перед ветропоклонниками ортогональных конструкций стоят определенные трудности. Среди них, в частности, проблема запуска.
В ортогональных установках используется тот же профиль крыла, что и в дозвуковом самолете. Самолет, прежде чем “опереться” на подъемную силу крыла, должен разбежаться. Так же обстоит дело и в случае с ортогональной установкой. Сначала к ней нужно подвести энергию – раскрутить и довести до определенных аэродинамических параметров, а уже потом она сама перейдет из режима двигателя в режим генератора.
Отбор мощности начинается при скорости ветра около 5 м/с, а номинальная мощность достигается при скорости 14-16 м/с. Предварительные расчеты ветроустановок предусматривают их использование в диапазоне от 50 до 20 000 кВт. В реалистичной установке мощностью 2000 кВт диаметр кольца, по которому движутся крылья, составит около 80 метров.
У мощного ветродвигателя большие размеры. Однако можно обойтись и малыми – взять числом, а не размером. Снабдив каждый электрогенератор отдельным преобразователем можно просуммировать выходную мощность, вырабатываемую генераторами. В этом случае повышается надежность и живучесть ветроустановки.
Для
того чтобы производить
Под коэффициент
использования ветроэнергии понимается
отношение механической мощности, развиваемой
ветродвигателем, к механической мощности
воздушного потока, протекающего через
пространство, ометаемое рабочими поверхностями
(крыльями или лопастями) этого ветродвигателя.
В международной ветроэнергетике принято
обозначать коэффициент использования
ветроэнергии Ср и называть «Си Пи фактор».
Теоретически доказано, что для идеального
ветродвигателя, в котором не учитываются
никакие потери, величина Ср не может быть
более 0,593. Это число получило название
лимит Бетца и по определению является
величиной безразмерной.
Быстроходность ветродвигателя – это
отношение линейной скорости наиболее
удаленной от оси вращения ветродвигателя
точки крыла (определяемое радиусом ротора
и его частотой вращения) к скорости ветра,
которое принято обозначать символом
U . Быстроходность по определению является
величиной безразмерной. Считается, что
ветро_двигатель тихоходный, если U < 2,
и быстроходный, если 4.
Энергетические
характеристики
Основные свойства любого ветродвигателя
достаточно полно описываются зависимостью
СP = f(1), которая называется его главной
энерго характеристикой. На рисунке 8 приведены
главные энергетические характеристики
ряда распространенных ветродвигателей.
Ветроэнергетикам хорошо известно, что СP £0,593 , что было теоретически доказано нашими российскими учеными (Сабинин и др.) еще в 1914 г., но за рубежом доказательство было опубликовано в 1924 г. немецким физиком Бетцем, и величина 0,593 носит название «предел Бетца».
Неожиданные проявления и применения. Реально работающие ветроагрегаты обнаружили ряд отрицательных явлений. Например, распространение ветрогенераторов может затруднить прием телепередач и создавать мощные звуковые колебания. Появление экспериментального ветродвигателя на Оркнейских островах (Англия) в 1986 году вызвало многочисленные жалобы от телезрителей ближайших населенных пунктов. В итоге около ветростанции был построен телевизионный ретранслятор. Лопасти крыльчатой ветряной турбины были выполнены из стеклопластика, который не отражает и не поглощает радиоволны. Помехи создавал стальной каркас лопастей и имеющиеся на них металлические полоски, предназначенные для отвода ударов молний. Они отражали и рассеивали ультракоротковолновый сигнал. Отраженный сигнал смешивался с прямым, идущим от передатчика, и создавал на экранах помехи. Построенная в 1980 году в городке Бун (США) ветроэлектростанция, дающая 2 тысячи киловатт, действовала безотказно, но вызывала нарекания жителей городка. Во время работы ветряка в окнах дребезжали стекла и звенела посуда на полках. Было установлено, что шестидесятиметровый винт при определенной скорости вращения издавал инфразвук. Он не ощущается человеческим ухом, но вызывает низкочастотные колебания предметов и небезопасен для человека. После доработки лопастей от инфразвуковых колебаний удалось избавиться. Ветродвигатели могут не только вырабатывать энергию. Способность привлекать внимание вращением без расходования энергии используется для рекламы. Наиболее простой – однолопастный карусельный ветродвигатель представляет собой прямоугольную пластинку с отогнутыми краями. Закрепленный на стене, он начинает вращаться даже при незначительном ветре. На большой площади крыльев карусельный трех-четырех лопастный ветродвигатель может вращать рекламные плакаты и небольшой генератор. Запасенная в аккумуляторе электроэнергия может освещать крылья с рекламой в ночное время, а в безветренную погоду и вращать их.
Экономика ветроэнергетики
Ветряные
генераторы практически не потребляют
ископаемого топлива. Работа ветрогенератора
мощностью 1 МВт за 20 лет эксплуатации
позволяет сэкономить примерно 29 тыс.
тонн угля или 92 тыс. баррелей нефти. Себестоимость
электричества, производимого
Скорость ветра Себестоимость (для США, 2004 год)
7,16 м/c 4,8 цента/кВт·ч;
8,08 м/с 3,6 цента/кВт·ч;
9,32 м/с 2,6 цента/кВт·ч.
Для сравнения:
себестоимость электричества, производимого
на угольных электростанциях США, 4,5—6
цента/кВт·ч. Средняя стоимость
При удвоении
установленных мощностей
В марте
2006 года Earth Policy Institute (США) сообщил о
том, что в двух районах США
стоимость ветряной электроэнергии
стала ниже стоимости традиционной
энергии. Осенью 2005 года из-за роста
цен на природный газ и уголь
стоимость ветряного
Ветроэнергетика
является нерегулируемым источником энергии.
Выработка ветроэлектростанции
зависит от силы ветра — фактора,
отличающегося большим
Проблемы в сетях и диспетчеризации энергосистем из-за нестабильности работы ветрогенераторов начинаются после достижения ими доли в 20-25 % от общей установленной мощности системы. Для России это будет показатель, близкий к 50 тыс. — 55 тыс. МВт.
По данным испанских компаний «Gamesa Eolica» и «WinWind» точность прогнозов выдачи энергии ветростанций при почасовом планировании на рынке «на день вперед» или спотовом режиме превышает 95 %.
Небольшие
единичные ветроустановки могут
иметь проблемы с сетевой инфраструктурой,
поскольку стоимость линии
Крупные ветроустановки испытывают значительные проблемы с ремонтом, поскольку замена крупной детали (лопасти, ротора и т. п.) на высоте более 100 м является сложным и дорогостоящим мероприятием.
В России считается, что применение ветрогенераторов в быту для обеспечения электричеством малоцелесообразно из-за:
Высокой стоимости инвертора ~ 50 % стоимости всей установки (применяется для преобразования переменного или постоянного тока получаемого от ветрогенератора в ~ 220В 50Гц (и синхронизации его по фазе с внешней сетью при работе генератора в параллель))
Высокой стоимости аккумуляторных батарей — около 25 % стоимости установки (используются в качестве источника бесперебойного питания при отсутствии или пропадании внешней сети)
Для обеспечения надёжного электроснабжения к такой установке иногда добавляют дизель-генератор, сравнимый по стоимости со всей установкой.
В настоящее
время, несмотря на рост цен на энергоносители,
себестоимость электроэнергии не составляет
сколько-нибудь значительной величины
у основной массы производств
по сравнению с другими затратами;
ключевыми для потребителя
Основными факторами, приводящими к удорожанию энергии, получаемой от ветрогенераторов, являются:
Необходимость получения электроэнергии промышленного качества ~ 220В 50 Гц (требуется применение инвертора)
Необходимость автономной работы в течение некоторого времени (требуется применение аккумуляторов)
Необходимость длительной бесперебойной работы потребителей (требуется применение дизель-генератора)
В настоящее
время наиболее экономически целесообразно
получение с помощью
Отопление является основным энергопотребителем любого дома в России.
Схема ветрогенератора и управляющей автоматики кардинально упрощается.
Схема автоматики может быть в самом простом случае построена на нескольких тепловых реле.
В качестве аккумулятора энергии можно использовать обычный бойлер с водой для отопления и горячего водоснабжения.
Потребление тепла не так требовательно к качеству и бесперебойности: температуру воздуха в помещении можно поддерживать в широких диапазонах 19—25 °C, а в бойлерах горячего водоснабжения 40—97 °C без ущерба для потребителей.
Экологические аспекты ветроэнергетики
Ветрогенератор мощностью 1 МВт сокращает ежегодные выбросы в атмосферу 1800 тонн СО2, 9 тонн SO2, 4 тонн оксидов азота.
По оценкам Global Wind Energy Council к 2050 году мировая ветроэнергетика позволит сократить ежегодные выбросы СО2 на 1,5 миллиарда тонн.
Ветряные энергетические установки производят две разновидности шума:
механический
шум — шум от работы механических
и электрических компонентов (для
современных ветроустановок практически
отсутствует, но является значительным
в ветроустановках старших
аэродинамический шум — шум от взаимодействия ветрового потока с лопастями установки (усиливается при прохождении лопасти мимо башни ветроустановки)
В настоящее время при определении уровня шума от ветроустановок пользуются только расчётными методами. Метод непосредственных измерений уровня шума не дает информации о шумности ветроустановки, так как эффективное отделение шума ветроустановки от шума ветра в данный момент невозможно.
Источник шума Уровень шума, дБ
Болевой порог человеческого слуха 120
Шум турбин реактивного двигателя на удалении 250 м 105
Шум от отбойного молотка в 7 м 95
Шум от грузовика при скорости движения 48 км/ч на удалении в 100 м 65
Шумовой фон в офисе 60
Шум от легковой автомашины при скорости 64 км/ч 55
Шум от ветрогенератора в 350 м 35—45
Информация о работе Глобальные ветры. К глобальным ветрам относятся пассаты и западный ветер