Автор работы: Пользователь скрыл имя, 11 Ноября 2014 в 18:17, контрольная работа
На протяжении всей жизни, т.е. онтогенеза, растение растет и развивается. Развитие - ход качественных последовательных изменений структуры, который проходит организм от возникновения из оплодотворенной яйцеклетки до естественной смерти. Общая схема развития каждого организма запрограммирована в его наследственной основе.
Растения усваивают минеральные
элементы из почвы только в растворенном
виде в форме ионов. Ионы – это частицы
несущие электрический заряд. Ионы могут
быть с отрицательным или же положительным
зарядом. Отрицательно заряженные ионы
называют анионами, а положительно заряженные
– катионами. Так, азот может поглощаться
в виде аниона NO-3 и катиона NO4+; фосфор и
сера в виде анионов фосфорной и серной
кислоты Н2РО-4 и SO2-4; калий, кальций,
магний, натрий, железо – в виде катионов
К+, Ca2+, Mg2+, Na+, F3+
Основные функции листа зеленого растения - фотосинтез (воздушное питание), транспирация (регулируемое испарение воды) и синтез ряда органических веществ, в том числе некоторых фитогормонов (ауксина, гиббереллинов, абсцизовой кислоты).
Основным органом фотосинтеза у высших растений является лист. Особенности строения этого органа позволяют осуществлять процесс поглощения солнечной энергии, преобразовывать ее в энергию органических соединений и обеспечивать автотрофный тип питания, который характерен для растительного организма. Лист, как правило, имеет плоскую форму и дорсовентральное строение. Пластинчатая форма листа обеспечивает наибольшую поверхность на единицу объема ткани, что создает наилучшие условия для воздушного питания.
В зависимости от способа фиксации углекислого газа существуют определенные различия в структурной организации листовой пластинки.
Большинство культурных растений средних широт имеют анатомическое строение, позволяющее осуществлять фиксацию углекислого газа за счет химических реакций цикла Кальвина (С3-путь).
Эпидермис состоит из живых клеток различной формы, не способных к ассимиляции углекислого газа (кроме клеток устьиц), имеет особенности в строении клеточных стенок (наличие кутикулы, состоящей главным образом из кутина, часто кутиновый слой покрыт сверху сложной смесью восков, волосками). Защищает лист от неблагоприятных факторов внешней среды, регулирует поток квантов света (способствуют различные структурные компоненты эпидермиса - восковой налет, волоски, выросты), за счет расположенных в эпидермисе устьиц обеспечивается поглощение СО2 и выделение О2 .
Мезофилл листа состоит из клеток двух типов, которые образуют столбчатую (полисадную) и губчатую паренхиму.
Столбчатая паренхима находится под эпидермисом, обращена к свету, содержит большую часть хлоропластов листа, выполняет основную работу в процессе поглощения квантов света и ассимиляции СО2.
Губчатая паренхима обладает обширной системой межклетников и большой поверхностью влажных клеточных стенок, способствует накоплению СО2 в мезофилле листа за счет химических реакций, которые идут в межклеточном пространстве:
Н2О + СО2 --> Н2СО3
Н2СО3 --> Н+ + НСО3- ;
ион НСО3- является резервом углекислого газа и обеспечивает его приток в клетки мезофилла листа.
Проводящие пучки состоят из ксилемы, флоэмы и механической ткани (склеренхима, колленхима), образуют сложную разветвленную систему в мезофилле листа.
Ксилема состоит из мертвых вытянутых клеток с утолщенными клеточными стенками. Главными клетками являются элементы сосудов. Зрелые элементы имеют сильно лигнифицированные боковые стенки, на их внутренней стороне имеются вторичные утолщения. Лигнин образует обширную плотную трехмерную сетку. Торцевые участки стенок почти полностью исчезают, что приводит к объединению элементов, расположенных последовательно, в длинные трубки-сосуды
Ксилема обеспечивает приток воды и минеральных солей, необходимых для метаболических процессов тканей листа, за счет боковых стенок она выполняет также опорную и механическую функции.
Флоэма состоит из ситовидных трубок и паренхимных клеток
Зрелые структурные элементы ситовидных трубок являются живыми клетками, которые сообщаются между собой через отверстия в торцевых участках их стенок (через ситовидные пластинки)
В процессе образования ситовидные трубки утрачивают ядро и большую часть цитоплазмы, функцию их жизнеобеспечения берут на себя клетки-спутники, которые прилегают к ситовидным трубкам и сообщаются с ними через поры ситовидных полей – перфорированные участки на боковой поверхности клеточной стенки. Флоэма обеспечивает отток ассимилянтов (продуктов фотосинтеза) из листа в другие органы растений.
Механическая ткань (представлена в виде склеренхимы и колленхимы - главным образом в больших жилках)
Колленхима образована живыми клетками, которые имеют вытянутую форму и неравномерно утолщенную клеточную стенку
Склеренхима состоит из мертвых клеток с лигнифицированной толстой вторичной клеточной стенкой. В листьях клетки склеренхимы имеют вытянутую форму в виде волокон и образуют пучки
Колленхима и склеренхима придают листьям прочность и выполняют опорную функцию.
Для ряда растений, осуществляющих процесс фиксации углекислого газа путем Хэтча-Слэка (С4-путь), характерно особое анатомическое строение листа. У С4-растений проводящие пучки окружены двойным слоем клеток – ײкранц-анатомияײ (от немецкого - корона, венец).
Первый слой - клетки обкладки сосудистого пучка содержат крупные (часто без гран) хлоропласты . В хлоропластах функционируют ферменты цикла Кальвина-Бенсона, этот слой обеспечивает накопление крахмала.
Второй слой - клетки мезофилла листа, содержат хлоропласты обычного вид . Этот вид хлоропластов активно осуществляет процесс световой фазы фотосинтеза и фиксацию углекислого газа с помощью ФЕП-карбоксилазы, создает высокое соотношение СО2/О2.
Одним из основных этапов в эволюции автотрофных организмов было возникновение особых клеточных органелл - хлоропластов. Основываясь на биохимических данных, полагают, что хлоропласты – это потомки цианобактерий, которые захватились некоторыми эукариотичными клетками путем эндоцитоза и перешли к симбиозу с ними.
Хлоропласты - овальные тельца (длина 5-10 мкм, ширина 2-3 мкм ограничены двумя мембранами.
Наружная мембрана придает хлоропластам оптимальную для поглощения света форму (в виде линзы), регулирует транспорт веществ из органеллы в цитоплазму и из цитоплазмы в органеллу, участвует в образовании особого компартмента – межмембранного пространства
Внутренняя мембрана – ограничивает внутренний компартмент органеллы, участвует в транспорте веществ.
Тилакоидная мембрана - образуется из внутренней мембраны, увеличивает внутреннюю поверхность, формирует тилакоиды (тилакоиды собраны в стопки, которые называются гранами) и внутритилакоидный компартмент органеллы , содержит пигменты и ферменты, обеспечивающие световую фазу фотосинтеза.
Строма – бесцветная гомогенная среда, содержит ферменты темновой фазы фотосинтеза, зерна крахмала, кольцеобразную молекулу ДНК, рибосомы и все ферменты, обеспечивающие биосинтез белков и полуавтономность хлоропластов.
Хлоропласты с помощью мембран разделены на различные компартменты, в которых содержатся специфические ферменты и создается определенная среда. Такое строение позволяет осуществлять сложный процесс фотосинтеза, состоящий из двух фаз – световой и темновой.
Окисли́тельное
фосфорили́рование — метаболиче
При окислительном
фосфорилировании происходит перенос электронов от соединен
Энергия, выделяющаяся
при движении электронов по ЭТЦ, используется
для транспорта протоновчерез внутреннюю митохондриальную мембрану в ме
Хотя окислительное
фосфорилирование относится к жизненно
важным реакциям фосфорилирования, в ходе
этого процесса также образуются реактивные формы кислорода, в частности, супероксид и перокс
Окислительное фосфорилирование следует отличать от субстратного фосфорилирования, при котором ATP синтезируется не за счёт энергии переноса электронов и протонов по цепи переносчиков, а при фосфорилировании ADP до ATP при отрыве фосфата от соединений с высоким потенциалом переноса фосфата[1].
Механизм окислительного
фосфорилирования основан на использовании реакций, в ходе которых энергия
высвобождается (экзергонических[en]), для проведения реакций,
которые протекают с затратой энергии
(эндергонических[en]). Переход электронов
по электроно-транспортной цепи от доноров
электронов (например, NADH) к акцепторам (например, кислороду) является экзергоническим
процессом: в ходе него выделяется энергия,
в то время как синтез ATP — эндергонический
процесс, для него необходим приток энергии
извне. И ЭТЦ, и ATP-синтаза располагаются
в мембране, и энергия переносится от ЭТЦ
к ATP-синтазе посредством переноса протонов
через мембрану в ходе хемиосмоса[2]. По сути, это механизм
напоминает электрическую цепь, в которой протоны
переносятся с отрицательно заряженной сторон
Информация о работе Принципы регулирования физиологических процессов